Riboflavin uptake by rat liver basolateral membrane vesicles. 1995

H M Said, and E McCloud, and N Yanagawa
Department of Medicine, University of California School of Medicine, Irvine 92717, USA.

The present study examined riboflavin (RF) uptake by purified rat liver basolateral membrane vesicle (BLMV). Uptake of RF was found to be Na(+)- and pH-independent in nature. Studies on RF uptake by BLMV as a function of incubation medium osmolarity have indicated that the uptake is the result of transport (66.5%) into the intravesicular space as well as binding (33.5%) to membrane surfaces. The process of RF uptake by BLMV was saturable as a function of substrate concentration with an apparent Km of 3.55 +/- 0.70 microM and Vmax of 39.89 +/- 3.24 pmol/mg protein/5 s, respectively. cis-Addition of unlabeled RF and its structural analogs lumaflavin and lumichrome inhibited the uptake of [3H]RF while trans-addition of unlabeled RF stimulated the efflux of [3H]RF from preloaded vesicles. No effect on RF uptake was found by the membrane transport inhibitors probenecid, 4,4-diisothiocyanotostilbene-2,2-disulfonic acid (DIDS) and 4-acetamido-4-isothiocyanatostilbene-2,2'-disulfonic acid (SITS). Induction of a transient positive intravesicular space led to a slight stimulation of RF uptake, while induction of a negative intravesicular space led to a slight inhibition in RF uptake. These results demonstrate the existence of a membrane-associated carrier system for RF uptake by liver BLMV. This system appears to be Na(+)- and pH-independent and is influenced to a certain degree by changes in transmembrane electrical potential.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012256 Riboflavin Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE. Vitamin B 2,Vitamin G,Vitamin B2
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

H M Said, and E McCloud, and N Yanagawa
November 1982, Bioscience reports,
H M Said, and E McCloud, and N Yanagawa
February 1990, Gastroenterology,
H M Said, and E McCloud, and N Yanagawa
December 1983, Archives internationales de physiologie et de biochimie,
H M Said, and E McCloud, and N Yanagawa
December 1998, Biochimica et biophysica acta,
H M Said, and E McCloud, and N Yanagawa
June 1993, Biochimica et biophysica acta,
H M Said, and E McCloud, and N Yanagawa
April 1989, The Journal of nutrition,
H M Said, and E McCloud, and N Yanagawa
February 1988, Pediatric research,
H M Said, and E McCloud, and N Yanagawa
September 1992, Gastroenterology,
H M Said, and E McCloud, and N Yanagawa
January 1990, Biochimica et biophysica acta,
H M Said, and E McCloud, and N Yanagawa
March 1980, Biochimica et biophysica acta,
Copied contents to your clipboard!