Ca(2+)- and Cl(-)-dependent, NMDA receptor-mediated neuronal death induced by depolarization in rat hippocampal organotypic cultures. 1995

M Takahashi, and S Y Liou, and M Kunihara
Tsukuba Research Laboratories, Upjohn Pharmaceuticals Ltd., Ibaraki-ken, Japan.

The neurotoxicity induced by depolarization with high-K+ was investigated in rat hippocampal organotypic slice cultures. The exposure of cultures to 90 mM K+ solution for 30 min caused a severe neuronal injury in CA1 region while less damage was observed in CA3 and dentate gyrus over the following day. This neurotoxicity was prevented in a concentration dependent manner by NMDA antagonist MK-801 or CPP. Non-NMDA antagonist, DNQX, had no protective effect. Omission of Ca2+ from the exposure solution prevented the neurotoxicity. Voltage-dependent Ca2+ channel blockers, nifedipine and flunarizine, failed to prevent the neurotoxicity. These results suggest that the Ca2+ influx through the NMDA receptor is predominantly involved in this neurotoxicity. Apparent tissue swelling was observed immediately after the depolarization. This swelling was completely inhibited by omission of Cl- from the exposure solution, accompanied with complete protection against neurotoxicity. This suggests that Cl(-)-dependent tissue swelling also largely contributes to the neurotoxicity. Depolarization with application of MK-801 (10 microM) or omission of Ca2+ from the solution still caused apparent swelling, despite these treatment protected neuronal death. We hypothesize that Cl(-)-dependent tissue swelling may be involved in the release of the excitatory amino acid, which activates the NMDA receptor.

UI MeSH Term Description Entries
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

M Takahashi, and S Y Liou, and M Kunihara
September 2002, Journal of neurochemistry,
M Takahashi, and S Y Liou, and M Kunihara
July 1997, Journal of neurochemistry,
M Takahashi, and S Y Liou, and M Kunihara
March 1994, Journal of neurophysiology,
M Takahashi, and S Y Liou, and M Kunihara
December 2003, Brain research. Developmental brain research,
M Takahashi, and S Y Liou, and M Kunihara
July 2004, Neurochemistry international,
Copied contents to your clipboard!