Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. 1995

E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
Institute of Biochemistry, Albert-Ludwigs-University, Freiburg, Germany.

Post-translational activation of the higher eukaryotic transcription factor NF-kappa B requires both phosphorylation and proteolytic degradation of the inhibitory subunit I kappa B-alpha. Inhibition of proteasome activity can stabilize an inducibly phosphorylated form of I kappa B-alpha in intact cells, suggesting that phosphorylation targets the protein for degradation. In this study, we have identified serines 32 and 36 in human I kappa B-alpha as essential for the control of I kappa B-alpha stability and the activation of NF-kappa B in HeLa cells. A point mutant substituting serines 32 and 36 by alanine residues was no longer phosphorylated in response to okadaic acid (OA) stimulation. This and various other Ser32 and Ser36 mutants behaved as potent dominant negative I kappa B proteins attenuating kappa B-dependent transactivation in response to OA, phorbol 12-myristate 13-acetate (PMA) and tumor necrosis factor-alpha (TNF). While both endogenous and transiently expressed wild-type I kappa B-alpha were proteolytically degraded in response to PMA and TNF stimulation of cells, the S32/36A mutant of I kappa B-alpha remained largely intact under these conditions. Our data suggest that such diverse stimuli as OA, TNF and PMA use the same kinase system to phosphorylate and thereby destabilize I kappa B-alpha, leading to NF-kappa B activation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic

Related Publications

E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
September 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
September 1993, Nature,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
October 2002, Biochemistry,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
January 2001, BioFactors (Oxford, England),
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
June 1996, The Journal of cell biology,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
November 1995, Biochemical and biophysical research communications,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
October 2003, American journal of physiology. Heart and circulatory physiology,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
December 1993, The EMBO journal,
E B Traenckner, and H L Pahl, and T Henkel, and K N Schmidt, and S Wilk, and P A Baeuerle
May 1995, Molecular and cellular biology,
Copied contents to your clipboard!