Pretranslational down-regulation of cytochromes P450 2C11 and 3A2 in male rat liver by tumor necrosis factor alpha. 1995

L Nadin, and A M Butler, and G C Farrell, and M Murray
Department of Medicine, University of Sydney, Westmead Hospital, New South Wales, Australia.

OBJECTIVE The cytokine tumor necrosis factor alpha (TNF-alpha) is a primary inflammatory mediator after liver injury. Several cytokines impair the regulation of cytochrome P450 (CYP) genes in liver, but the specificity of these effects remains unclear. This study investigated the effects of recombinant murine TNF-alpha on the expression of specific constitutive CYPs in male rat liver. METHODS Microsomal steroid hydroxylation was used to indicate the activities of specific CYPs after TNF-alpha treatment and immunoblotting to correlate CYP activities with protein contents. CYP messenger RNA levels were measured by solution hybridization. RESULTS Testosterone 2 alpha/16 alpha- and 6 beta-hydroxylations, mediated respectively by CYPs 2C11 and 3A2, were decreased after TNF-alpha treatment, whereas 7 alpha-hydroxylation (CYP 2A1) was unchanged. Similarly, progesterone 2 alpha/16 alpha- (CYP 2C11) and 6 beta-hydroxylations (CYP 3A2), but not 21-hydroxylation (CYP 2C6), were decreased after TNF-alpha treatment. 2C11 and 3A2 apoproteins and messenger RNAs, but not 2A1 apoprotein, were decreased after TNF-alpha treatment; changes in messenger RNAs were evident 4 hours after treatment. CONCLUSIONS TNF-alpha down-regulates CYPs 2C11 and 3A2 in male rat liver at a pretranslational level, whereas two other constitutive CYPs, 2A1 and 2C6, seem refractory to TNF-alpha. Thus, impaired CYP regulation by TNF-alpha resembles the combined effects of autologous interferons (on 3A2) and interleukins (on 2C11).

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

L Nadin, and A M Butler, and G C Farrell, and M Murray
April 1995, The Journal of pharmacology and experimental therapeutics,
L Nadin, and A M Butler, and G C Farrell, and M Murray
January 1998, Life sciences,
L Nadin, and A M Butler, and G C Farrell, and M Murray
January 2014, Fitoterapia,
L Nadin, and A M Butler, and G C Farrell, and M Murray
December 1997, Biochemical pharmacology,
L Nadin, and A M Butler, and G C Farrell, and M Murray
January 2005, European journal of pharmacology,
L Nadin, and A M Butler, and G C Farrell, and M Murray
September 1996, The Journal of pharmacology and experimental therapeutics,
L Nadin, and A M Butler, and G C Farrell, and M Murray
December 1997, The Journal of pharmacology and experimental therapeutics,
L Nadin, and A M Butler, and G C Farrell, and M Murray
November 1992, Molecular pharmacology,
L Nadin, and A M Butler, and G C Farrell, and M Murray
December 1995, Journal of biochemical toxicology,
Copied contents to your clipboard!