Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. 1995

E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
Department of Medicine, Stanford University Medical School, California 94305, USA.

Ferritin is a ubiquitously distributed iron-binding protein that plays a key role in cellular iron homeostasis. It is composed of two subunits, termed H (heavy or heart) and L (light or liver). In fibroblasts and other cells, the cytokine tumor necrosis factor-alpha (TNF) specifically induces synthesis of the ferritin H subunit. Using nuclear run-off assays, we demonstrate that this TNF-dependent increase in ferritin H is mediated by a selective increase in ferritin H transcription. Transfection of murine fibroblasts with chimeric genes containing the 5'-flanking region of murine ferritin H fused to the human growth hormone reporter gene reveals that the cis-acting element that mediates this response is located approximately 4.8 kilobases distal to the start site of transcription. Deletion analyses delimit the TNF-responsive region to a 40-nucleotide sequence located between nucleotides -4776 and -4736, which we term FER-2. Electrophoretic mobility shift assays and site-specific mutations indicate that this region contains two independent elements: one contains a sequence that binds a member of the NF-kappa B family of transcription factors, and a second contains a novel sequence that partially conforms to the NF-kappa B consensus sequence and may bind a different member of the NF-kappa B/Rel transcription factor family. Thus, effects of an inflammatory cytokine on ferritin are mediated by a family of transcription factors responsive to oxidative stress.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline

Related Publications

E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
July 2005, The Journal of biological chemistry,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
January 1999, Cold Spring Harbor symposia on quantitative biology,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
August 1997, Biochemical and biophysical research communications,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
January 2002, Postepy biochemii,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
March 2001, The Journal of biological chemistry,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
December 2003, The Journal of biological chemistry,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
July 2002, The Journal of biological chemistry,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
June 2002, Journal of virology,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
December 1994, Proceedings of the National Academy of Sciences of the United States of America,
E L Kwak, and D A Larochelle, and C Beaumont, and S V Torti, and F M Torti
December 2006, Molecular and cellular biology,
Copied contents to your clipboard!