The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. 1995

C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
Laboratory of Molecular Oncology, Rockefeller University, New York, New York 10021, USA.

The Crk protein belongs to the family of proteins consisting of mainly Src homology 2 and 3 (SH2 and SH3) domains. These proteins are thought to transduce signals from tyrosine kinases to downstream effectors. In order to understand the specificity and effector function of the SH3 domain of Crk, we screened an expression library for binding proteins. We isolated Eps15, a substrate of the epidermal growth factor receptor (EGFR) tyrosine kinase, and Eps15R, a novel protein with high sequence homology to the carboxyl-terminal domain of Eps15. Antibodies raised against a fragment of the Eps15R gene product immunoprecipitated a protein of 145 kDa. Eps15 and Eps15R bound specifically to the amino-terminal SH3 domain of Crk and coprecipitated equivalently with both c-Crk and v-Crk from cell lysates. The amino acid sequences of Eps15 and Eps15R featured several proline-rich regions as putative binding motifs for SH3 domains. In both Eps15 and Eps15R, we identified one proline-rich motif which accounts for their interaction with the Crk SH3 domain. Each binding motif contains the sequence P-X-L-P-X-K, an amino acid stretch that is highly conserved in all proteins known to interact specifically with the first SH3 domain of Crk. Furthermore, we found that immunoprecipitates of activated EGFR-kinase stably bound in vitro-translated Eps15 only in the presence of in vitro-translated v-Crk. Crk might therefore be involved in Eps15-mediated signal transduction through the EGFR.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
January 1996, The Journal of experimental medicine,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
August 2002, The Journal of biological chemistry,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
February 2017, Biochemical and biophysical research communications,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
September 1998, Proceedings of the National Academy of Sciences of the United States of America,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
May 1997, The Journal of biological chemistry,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
February 1996, Molecular and cellular biology,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
October 1997, Journal of immunology (Baltimore, Md. : 1950),
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
April 2013, Nanoscale,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
August 1994, Oncogene,
C Schumacher, and B S Knudsen, and T Ohuchi, and P P Di Fiore, and R H Glassman, and H Hanafusa
February 1995, Structure (London, England : 1993),
Copied contents to your clipboard!