Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. 1995

S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
Third Department of Internal Medicine, Fukui Medical School, Japan.

The low-density lipoprotein (LDL) receptor plays a crucial role in cholesterol metabolism. A related protein, designated the very low density lipoprotein (VLDL) receptor, that specifically binds apolipoprotein (apo) E has recently been characterized and shown to be expressed in heart, muscle and adipose tissue and the human monocyte-macrophage cell line THP-1. The VLDL receptor binds and internalizes VLDL and intermediate density lipoprotein from Watanabe heritable hyperlipidemic (WHHL) rabbits as well as beta-migrating VLDL from cholesterol-fed rabbits but not LDL from WHHL rabbits. Chinese hamster ovary (CHO) cells transfected with the rabbit VLDL receptor cDNA have now been shown to bind or internalize VLDL (d < 1.006 g/ml) isolated from fasted normolipidemic human subjects with lower affinity than WHHL-VLDL or rabbit beta-VLDL. However, binding and internalization were markedly enhanced when fasted human VLDL was preincubated with either recombinant human apoE (3/3) or lipoprotein lipase (LPL) in CHO cells overexpressing the rabbit or human VLDL receptor. CHO cells transfected with both the rabbit VLDL receptor cDNA and the human LPL cDNA effectively bound, internalized, and degraded fasted human VLDL without pretreatment. Treatment of heparinase reduced the effect of LPL-mediated binding at 4 degrees C, but the inhibitory effect was lower at 37 degrees C. Pseudomonas LPL also enhanced the binding of human fasted VLDL to the VLDL receptor at 37 degrees C in CHO cells overexpressing the human VLDL receptor. Taken together, LPL causes the enhancement of triglyceride-rich lipoproteins binding to the VLDL receptor via both the formation of bridge between lipoproteins and heparan sulfate proteoglycans and its lipolytic effect. Ligand blot analysis showed that the apparent molecular mass of the VLDL receptor is 118 kDa, which is smaller than that of the LDL receptor. These results indicate that the VLDL receptor recognizes both triglyceride-rich lipoproteins that are also relatively rich in apoE, as well as the remnants of triglyceride-rich lipoproteins after catabolism and the interaction with heparan sulfate proteoglycans by LPL. The VLDL receptor may thus function as a receptor for remnants of triglyceride-rich lipoproteins in extrahepatic tissues.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001057 Apolipoproteins E A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III. Apo-E,Apo E,Apo E Isoproteins,ApoE,Apolipoprotein E Isoproteins,Apoprotein (E),Apoproteins E,Isoproteins, Apo E,Isoproteins, Apolipoprotein E
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride

Related Publications

S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
April 2000, The Biochemical journal,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
April 1996, Journal of lipid research,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
December 1984, The Journal of biological chemistry,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
September 1999, Journal of lipid research,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
November 2000, Journal of lipid research,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
July 1999, Journal of lipid research,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
July 1998, The Journal of biological chemistry,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
June 1975, Biochemistry,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
August 1986, Biochemical and biophysical research communications,
S Takahashi, and J Suzuki, and M Kohno, and K Oida, and T Tamai, and S Miyabo, and T Yamamoto, and T Nakai
September 1991, The Journal of biological chemistry,
Copied contents to your clipboard!