The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. 1994

T Nishino
Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo.

Although mammalian xanthine oxidase exists originally as a dehydrogenase form in freshly prepared samples, it is converted to an oxidase form during purification, either irreversibly by proteolysis or reversibly by sulfhydryl oxidation of the protein molecule. However, avoiding proteolysis the mammalian enzyme can be purified as an interconvertible form and thus can be used to compare directly the properties of xanthine dehydrogenase and the oxidase derived from the same enzyme molecule. The cDNAs encoding the enzyme have been cloned from several sources, and structural information is becoming available. The most significant difference between the two forms is the protein conformation around FAD, which changes the redox potential of the flavin and the reactivity of FAD with the electron acceptors, NAD and molecular oxygen. The flavin semiquinone is thermodynamically stable in xanthine dehydrogenase, but is unstable in xanthine oxidase. Detailed analyses by stopped-flow techniques suggest that the flavin semiquinone reacts with oxygen to form superoxide anion while the fully reduced flavin reacts to form hydrogen peroxide. Although xanthine dehydrogenase can produce greater amounts of superoxide anion than xanthine oxidase during xanthine-oxygen turnover, it seems to be physiologically insignificant because NAD inhibits almost completely the formation of superoxide anion. Although the involvement of this enzyme in reperfusion injury has been proposed, this seems to be more complex than originally envisaged and still remains to be established.

UI MeSH Term Description Entries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014968 Xanthine Dehydrogenase An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes. Purine Hydroxylase I,Xanthine Oxidoreductase,Dehydrogenase, Xanthine,Oxidoreductase, Xanthine
D014969 Xanthine Oxidase An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria. Hypoxanthine Oxidase,Hypoxanthine Dehydrogenase,Hypoxanthine-Xanthine Oxidase,Purine-Xanthine Oxidase,Dehydrogenase, Hypoxanthine,Hypoxanthine Xanthine Oxidase,Oxidase, Hypoxanthine,Oxidase, Hypoxanthine-Xanthine,Oxidase, Purine-Xanthine,Oxidase, Xanthine,Purine Xanthine Oxidase
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
Copied contents to your clipboard!