ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit. 1994

J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Spain.

Elements responsible for the transcriptional activity of the human ATP synthase beta-subunit (ATPsyn beta) gene promoter have been studied through transient expression in HepG2 hepatoma cells of a CAT gene connected with various 5'-deletion mutants of the 5'-flanking region. Promoter activity was mostly dependent upon a single CCAAT motif as well as a nearby Ets domain binding region. This last region contains two sites that bind Ets-related proteins present in liver nuclear extracts as well as recombinant purified Ets-1 protein. The ATPsyn beta promoter was trans-activated by Ets-1 and Ets-2 expression vectors, and this effect was lost when the Ets binding region was deleted. The Ets binding region of the ATPsyn beta promoter increased basal expression and conferred Ets-1- and Ets-2-dependent trans-activation to the herpes symplex thymidine kinase minimal promoter. A double-point mutation of the main Ets-binding site, which suppresses Ets binding, blocks Ets-dependent trans-activation. It is concluded that the gene for the mitochondrial ATPsyn beta is a target of transcriptional activation by members of the Ets family of transcription factors. It is suggested that Ets transcription factors may be involved in the enhanced expression of the ATPsyn beta gene in highly proliferating cells and in the coordinate transcription of nuclear genes for mitochondrial proteins.

UI MeSH Term Description Entries
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
September 2006, Biochemical and biophysical research communications,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
April 1990, The Journal of biological chemistry,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
October 1986, Nucleic acids research,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
May 2001, Gene,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
November 1989, Genomics,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
August 1994, FEBS letters,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
May 2003, Brain research. Molecular brain research,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
August 1988, The Journal of biological chemistry,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
July 1991, Nucleic acids research,
J A Villena, and I Martin, and O Viñas, and B Cormand, and R Iglesias, and T Mampel, and M Giralt, and F Villarroya
August 1990, FEBS letters,
Copied contents to your clipboard!