Membrane potential dependence of the kinetics of cationic amino acid transport systems in human placenta. 1994

N Eleno, and R Devés, and C A Boyd
Department of Human Anatomy, University of Oxford.

1. Mediated influx of L-lysine into human placental brush-border membrane vesicles occurs through two systems, one of lower affinity but high capacity, the other of very high affinity but low capacity. These transporters have features characteristic of systems y+ (the classical system) and y+L (recently described in the erythrocyte), respectively. 2. In solutions containing sodium the entry of lysine through the high-affinity system (y+L) is inhibited by the neutral amino acids L-leucine, L-methionine and L-glutamine with comparable high affinity. The removal of sodium reduces the affinity but not the maximal extent of this inhibition. Leucine and methionine, but apparently not glutamine, inhibit lysine entry through system y+ with a much lower affinity. 3. The influx of lysine through system y+ changes markedly in response to alterations of membrane potential. In the presence of an inwardly directed negative diffusion potential created by an inwardly directed thiocyanate (SCN-) gradient, the influx of lysine through this route is accelerated; with an inwardly directed positive potassium diffusion potential, lysine influx through this route is reduced. The influx of lysine through system y+L is much less sensitive to such alterations of potential. 4. Analysis of the kinetic constants characterizing system y+ shows that with a change of potential from zero to negative (approximately -60 mV) the maximum velocity (Vmax) is roughly doubled and the half-saturation constant (Km) halved leading to a 4-fold increase in permeability. For system y+L smaller changes are seen and Km does not change; the resulting increase in y+L permeability is 1.5-fold. 5. These findings are discussed with respect both to the mechanism of membrane transport and placental epithelial function.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

N Eleno, and R Devés, and C A Boyd
September 1994, The American journal of physiology,
N Eleno, and R Devés, and C A Boyd
June 1988, The American journal of physiology,
N Eleno, and R Devés, and C A Boyd
July 1990, The American journal of physiology,
N Eleno, and R Devés, and C A Boyd
August 1991, The American journal of physiology,
N Eleno, and R Devés, and C A Boyd
January 1988, Progress in clinical and biological research,
N Eleno, and R Devés, and C A Boyd
July 1999, Molecular genetics and metabolism,
N Eleno, and R Devés, and C A Boyd
January 1990, Biochimica et biophysica acta,
N Eleno, and R Devés, and C A Boyd
November 1987, Biochimica et biophysica acta,
N Eleno, and R Devés, and C A Boyd
March 1989, The American journal of physiology,
N Eleno, and R Devés, and C A Boyd
June 2000, American journal of physiology. Cell physiology,
Copied contents to your clipboard!