Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence. 1994

C C Aickin
University Department of Pharmacology, Oxford, UK.

1. Mechanisms involved in the regulation of intracellular pH (pHi) in smooth muscle cells of guinea-pig ureter have been investigated using double-barrelled pH-sensitive microelectrodes in isolated strips of tissue. 2. Removal of CO2-HCO3- from the superfusing solution caused a fall in the steady-state pHi except in a few cells which had been excised from the animal for many hours (usually > 24 h). The pHi value was 7.22 +/- 0.09 (n = 89; mean +/- S.D. of an observation) in solution buffered with 5% CO2-21 mM HCO3-, compared with 6.92 +/- 0.24 (n = 67) in the nominal absence of CO2-HCO3-. Recovery from experimentally induced acidosis was faster in the presence, rather than nominal absence, of CO2-HCO3- (mean half-times of 2.7 +/- 0.7 min, n = 41, and 4.6 +/- 1.3 min, n = 12, respectively). These results suggest the presence of both HCO(3-)-dependent and -independent mechanisms for the effective extrusion of acid equivalents. 3. Recovery from acidosis was dependent on external Na+ (Na+o) in both the presence and nominal absence of CO2-HCO3-, with an apparent half-maximal activation at approximately 4 and 20 mM Na+o, respectively. Removal of Na+o in the steady state caused a fall in pHi which proceeded at a faster rate in the presence rather than in the nominal absence of CO2-HCO3-. 4. Amiloride (100 microM-1 mM) reversibly inhibited the recovery from acidosis and caused a fall in the steady-state pHi when applied in the nominal absence of CO2-HCO3-, but had no measurable effect on either the recovery from acidosis or steady-state pHi in the presence of CO2-HCO3-. These results suggest that Na(+)-H+ exchange was responsible for extrusion of acid equivalents in the nominal absence of CO2 and HCO3-, but that it played little part under more physiological conditions. 5. Although Na(+)-H+ exchange appeared to be activated below a pHi of about 7.2, it was incapable of maintaining a 'normal' pHi in the nominal absence of CO2-HCO3- in freshly excised cells, where values between 6.06 and 6.89 were recorded. Only in aged preparations, in which the intrinsic intracellular acid loading was substantially reduced (as judged from the rate of acidification on application of amiloride in the nominal absence of CO2-HCO3-) did the steady-state value approximate to that observed in the presence of CO2-HCO3-, at about 7.2.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret

Related Publications

C C Aickin
July 1967, The Journal of physiology,
C C Aickin
January 1970, Sapporo igaku zasshi. The Sapporo medical journal,
C C Aickin
October 1987, European journal of pharmacology,
C C Aickin
January 1990, Progress in clinical and biological research,
C C Aickin
February 1988, The American journal of physiology,
Copied contents to your clipboard!