Vasoactive intestinal peptide stimulates a cAMP-mediated Cl- current in avian salt gland cells. 1994

S C Martin, and T J Shuttleworth
Department of Physiology, University of Rochester School of Medicine and Dentistry, NY 14642.

VIP plays an integral role in both protein and fluid secretion in many exocrine glands. By employing the perforated patch-clamp whole-cell recording technique we investigated the effects of VIP on membrane potential and transmembrane currents in avian exocrine salt gland cells. Prior to application of VIP, salt gland cells had a resting membrane potential close to -45 mV. When challenged with VIP (1-100 nM) a sustained depolarization to ECl- was induced which was mimicked by the application of cell-permeable cAMP analogues or forskolin (1 microM). By employing the voltage-clamp recording configuration a sustained increase in current was observed with a reversal potential which approximated ECl-. Ionic substitution experiments confirmed that the current was a Cl- conductance which was inhibited by the Cl- channel blockers flufenamic acid and niflumic acid and by the inhibitory cAMP isomer, adenosine-3',5'-cyclic monophosphothioate, Rp-isomer. Based on this, and the fact that the kinetic properties of the Cl- current activated by VIP are similar to those activated by cAMP, we propose that VIP-receptor interaction results in the activation of a cAMP-dependent Cl- current.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009544 Niflumic Acid An analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. Donalgin,Flunir,Niflactol,Niflugel,Nifluril,Acid, Niflumic
D004372 Ducks A water bird in the order Anseriformes (subfamily Anatinae (true ducks)) with a broad blunt bill, short legs, webbed feet, and a waddling gait. Duck
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005439 Flufenamic Acid An anthranilic acid derivative with analgesic, anti-inflammatory, and antipyretic properties. It is used in musculoskeletal and joint disorders and administered by mouth and topically. (From Martindale, The Extra Pharmacopoeia, 30th ed, p16) Dignodolin,Acid, Flufenamic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012491 Salt Gland A compound tubular gland, located around the eyes and nasal passages in marine animals and birds, the physiology of which figures in water-electrolyte balance. The Pekin duck serves as a common research animal in salt gland studies. A rectal gland or rectal salt gland in the dogfish shark is attached at the junction of the intestine and cloaca and aids the kidneys in removing excess salts from the blood. (Storer, Usinger, Stebbins & Nybakken: General Zoology, 6th ed, p658) Rectal Gland,Gland, Rectal,Gland, Salt,Glands, Rectal,Glands, Salt,Rectal Glands,Salt Glands
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D013873 Thionucleotides Nucleotides in which the base moiety is substituted with one or more sulfur atoms.

Related Publications

S C Martin, and T J Shuttleworth
December 1987, The American journal of physiology,
S C Martin, and T J Shuttleworth
October 1988, The American journal of physiology,
S C Martin, and T J Shuttleworth
July 1983, The American review of respiratory disease,
S C Martin, and T J Shuttleworth
April 2002, The Journal of membrane biology,
S C Martin, and T J Shuttleworth
February 1990, The American journal of physiology,
S C Martin, and T J Shuttleworth
June 1978, FEBS letters,
S C Martin, and T J Shuttleworth
November 1986, Molecular and cellular endocrinology,
Copied contents to your clipboard!