Evaluation of estrogen receptor, antiestrogen binding sites and calmodulin for antiestrogen resistance of two clones derived from the MCF-7 breast cancer cell line. 1994

M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
Laboratoire J.-C. Heuson de Cancérologie Mammaire, Institut Jules Bordet, Rue Héger-Bordet, Brussels, Belgium.

Estrogen receptor (ER), antiestrogen binding sites (AEBS) and calmodulin (CaM) are potential targets of antiestrogen (AE) action. To analyse further which of these targets are primarily involved in the antiproliferative activity of these drugs against human breast cancers, two cell clones, namely the RTx6 and LY-2 variants, selected from MCF-7 cells for their resistance to high doses of tamoxifen (TAM) and the Keoxifen (KEO) analog LY 117018, respectively, were studied for their sensitivity to hydroxytamoxifen (OH-TAM) and KEO as well as the strong calmodulin antagonist calmidazolium. The effects of these drugs on both cell growth and progesterone receptor (PgR) concentration were assessed. Binding properties for ER, AEBS and CaM of each compound were also measured. Our results confirmed that basal growth of RTx6 and LY-2 cells was more resistant to OH-TAM and KEO than parent MCF-7 cells, although both displayed a significant inhibition at the highest doses assessed. In regard to calmidazolium inhibition, each variant behaved as did the MCF-7 line indicating that a modification at the CaM level was not responsible for their lower sensitivity to AEs. Nor could the association of CaM to ER which did not differ among all cell lines. Resistance of these variants was not related to AEBS in view of the total lack of such sites in RTx6 cells. However, under estrogenic growth stimulation such sites may play some role, since LY-2 cells in the presence of estradiol displayed a real antiestrogen-resistant pattern while RTx6 cells were more sensitive than MCF-7 cells to OH-TAM. This property was not found in the antagonism against estradiol-induced PgR synthesis which was observed with each variant. Thus the PgR concentration of RTx6 cells was strongly down-regulated by OH-TAM and KEO and reduced in LY-2 cells to the same extent as in MCF-7 cells. All these observations show that AE resistance is not entirely related to ER mediated events and that alterations at the ER and CaM levels are unlikely to account for the lower AE sensitivity of the variants investigated.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
December 1997, Archives of pharmacal research,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
February 1989, Biochemical and biophysical research communications,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
December 1985, Chemical & pharmaceutical bulletin,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
November 1984, Cancer research,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
September 1973, The Journal of biological chemistry,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
January 1986, Breast cancer research and treatment,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
January 1991, Cancer chemotherapy and pharmacology,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
September 1984, Cancer research,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
January 1983, Breast cancer research and treatment,
M Borras, and L Jin, and A Bouhoute, and N Legros, and G Leclercq
March 1986, Endocrinology,
Copied contents to your clipboard!