Retrovirus-mediated transfer of the multidrug resistance gene into human haemopoietic progenitor cells. 1994

F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
Centro Trasfusionale e di Immunologia dei Trapianti, Ospedale Maggiore Policlinico, Milano, Italy.

We report the utilization of cord blood (CB) or bone marrow (BM) derived low density or purified CD34+ cells as a target for human multidrug resistance (MDR1) gene transfer. Cells were cocultivated for 48 h with an irradiated MDR1 retroviral producer line. Since some degree of MDR1 gene expression has been reported to occur in haemopoietic progenitor cells and in peripheral blood cells, efficiency of MDR1 gene transfer was assessed by: (1) Drug selection and culture in presence of 50 ng/ml doxorubicin, 10 ng/ml colchicine and 0.85 micrograms/ml taxol. In uninfected control, 1-2% of CFU-GM and CFU-GEMM were found to be drug-resistant, while 14-31% of original clonogenic activity was found after 2 weeks of culture of transduced cells. Efficiency of MDR1 transfer was significantly enhanced by prestimulation with cytokines, and found to be significantly superior in CB-derived compared to BM-derived progenitors. (2) Analysis of MDR1 gene expression by evaluating MDR1 mRNA through polymerase chain reaction. MDR1 expression was very low in cultures of uninfected controls, whereas, after drug selection, MDR1 mRNA levels in transduced cells was as high as in the MDR1 retroviral producer line (positive controls). (3) Flow cytometric analysis of the expression of CD34 and P-glycoprotein, the product of the MDR1 gene. After MDR1 transduction and 2 weeks of culture, membrane expression of P-glycoprotein was found on 17-25% of viable CD34+ cells. (4) Cytochemical localization by APAAP staining of P-glycoprotein. No specific localization was found in untransduced controls, whereas transduced and cultured CB-cells expressed P-glycoprotein on plasma and nuclei membrane. In conclusion, MDR1 gene transfer into CB- and BM-derived progenitor cells seems a feasible and attractive approach to generate a drug-resistant haemopoiesis.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor

Related Publications

F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
January 1988, Journal of cell science. Supplement,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
June 2000, Nature medicine,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
March 1998, Journal of molecular medicine (Berlin, Germany),
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
March 1999, Human gene therapy,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
June 2000, Chinese medical journal,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
July 1988, Blut,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
January 1987, Annals of the New York Academy of Sciences,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
September 1997, Bailliere's clinical haematology,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
January 1986, Nature,
F Bertolini, and L de Monte, and C Corsini, and L Lazzari, and E Lauri, and D Soligo, and M Ward, and A Bank, and F Malavasi
November 1985, Science (New York, N.Y.),
Copied contents to your clipboard!