Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. 1994

L L Kiefer, and C A Fierke
Biochemistry Department, Duke University Medical Center Durham, North Carolina 27710.

Carbonic anhydrase II (CAII) contains a conserved His3 zinc polyhedron which is essential for catalysis. Removal of any one of the His ligands by replacement with Ala decreases (approximately 10(5)-fold), but does not abolish, zinc binding and increases the rate constant for zinc dissociation. CAII variants with a His ligand substituted with Cys, Asp, or Glu bind zinc only approximately 10-fold better than a His2 zinc polyhedron in CAII. The large decrease in zinc affinity (approximately 5 kcal/mol) in these variants compared to the wild-type His3 site reflects mainly unfavorable compensatory protein structural rearrangements observed in the X-ray crystallographic structures of some of these CAII variants, described by Ippolito and Christianson (following paper in this issue). However, the zinc affinity of these sites is still higher than zinc polyhedra designed de novo. Substitution of the His zinc ligands with negatively charged amino acids both increases the pKa of the zinc-bound water by > or = 1.6 pH units, confirming that neutral ligands maintain the low zinc-water pKa, and decreases the pH-independent kcat/KM for ester hydrolysis (3-30-fold) and CO2 hydration (approximately 10(3)-10(5)-fold). Additionally, decreases in the dissociation constant (approximately approximately 10(2)-10(5)-fold) for the transition state analog acetazolamide correlate with the decreased catalytic efficiency and increased pKa of these CAII variants. These data indicate that the histidine ligands, although not essential for catalysis, are conserved to maximize electrostatic stabilization of both the ground-state zinc-hydroxide and the negatively charged transition state. These studies provide valuable insights into the functional consequences of engineering a catalytic zinc site in a metalloenzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002256 Carbonic Anhydrases A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC 4.2.1.1. Carbonate Dehydratase,Carbonic Anhydrase,Anhydrases, Carbonic,Dehydratase, Carbonate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

L L Kiefer, and C A Fierke
June 2015, Inorganic chemistry,
L L Kiefer, and C A Fierke
May 2012, International journal of biological macromolecules,
L L Kiefer, and C A Fierke
October 2012, Inorganic chemistry,
L L Kiefer, and C A Fierke
January 2007, Biophysical journal,
L L Kiefer, and C A Fierke
January 1962, The Journal of biological chemistry,
L L Kiefer, and C A Fierke
December 1998, Protein science : a publication of the Protein Society,
L L Kiefer, and C A Fierke
April 1993, European journal of biochemistry,
L L Kiefer, and C A Fierke
March 2013, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!