The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. 1994

H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf.

The relationship between specific growth rate (mu) and steady-state glucose concentration was investigated for Escherichia coli ML30 in carbon-limited chemostat culture. This was made possible by the development of a method for measuring reducing sugars in culture media in the microgram.1-1-range. Cells initially cultivated in batch culture at high glucose concentrations required long-term adaptation to nutrient-limited growth conditions in the chemostat (between 100-200 volume changes at D = 0.6 h-1) until steady-state with respect to residual glucose concentration was reached; for adapted cells, however, new steady-state glucose concentrations were usually obtained within less than 10 volume changes. A statistical evaluation of different kinetic models showed that between 0.2 h-1 < D < 0.8 h-1 the three models proposed by Monod (1942), Shehata and Marr (1971), and Westerhoff et al. (1982) described the data equally well and the applicability of the different models is discussed. Depending on the model used, calculated glucose concentrations supporting half maximum growth rate (Ks) were in the range of 40-88 micrograms.1-1. The data strongly suggest that the large differences in Ks constants reported in the literature (ranging from 40 micrograms.1-1 up to 99 mg.1-1) are due to the use of E. coli cells adapted to different degrees to nutrient-limited growth conditions. This indicates that it is probably not possible to describe the kinetic properties of a bacterium with a single set of kinetic 'constants'.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
November 1970, Journal of bacteriology,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
May 1977, Journal of bacteriology,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
January 1984, Zeitschrift fur allgemeine Mikrobiologie,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
January 1989, Yeast (Chichester, England),
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
January 1982, Zeitschrift fur allgemeine Mikrobiologie,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
April 2013, Journal of biotechnology,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
September 2000, Journal of microbiological methods,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
January 2000, Canadian journal of microbiology,
H Senn, and U Lendenmann, and M Snozzi, and G Hamer, and T Egli
November 1996, Biotechnology and bioengineering,
Copied contents to your clipboard!