Ins 1,4,5-P3 and Ca2+ signaling in quiescent neonatal cardiac myocytes. 1994

C A Hansen, and S K Joseph, and J D Robishaw
Geisinger Clinic, Weis Center For Research, Danville, PA 17822-2619.

Activation of alpha 1-adrenergic receptors in neonatal cardiac myocytes results in changes in contractile activity and the induction of hypertrophic growth. The biochemical mechanisms responsible for these diverse effects are not yet established, but presumably involve the associated alpha 1-adrenergic stimulation of phosphatidylinositol (PI) hydrolysis, with concomitant generation of Ins 1,4,5-P3 and diacylglycerol. This study examined whether alpha 1-adrenergic generation of Ins 1,4,5-P3 in intact, quiescent, neonatal cardiac myocytes resulted in a Ca2+ signal. Stimulation of myocytes with norepinephrine in the presence of propranolol caused accumulation of inositol mono-, bis and trisphosphates. However, alpha 1-adrenergic stimulation did not alter cytosolic free Ca2+ levels in 85% of the myocytes examined. Direct generation of Ins 1,4,5-P3, by photolysis of microinjected caged Ins 1,4,5-P3, was also unable to alter cytosolic free Ca2+ levels, despite the presence of Ins 1,4,5-P3 receptors. Taken together, these data indicated that alpha 1-adrenergic stimulation did not initiate Ca2+ signaling because Ins 1,4,5-P3-induced Ca2+ mobilization was not operative in quiescent neonatal cardiac myocytes. Normal excitation-contraction Ca2+ handling mechanisms were present in these cells, as illustrated by depolarization- and caffeine-induced Ca2+ transients. Analysis of these same myocytes following 48 h in the presence of norepinephrine and propranolol showed a 40% increase in the ratio of protein to DNA and a 350% increase in release of atrial naturietic factor, compared to control cells, indicating the normal operation of alpha 1-adrenergic-induced hypertrophic growth. Therefore, the assumption that Ca(2+)-dependent processes will be activated by receptor signaling pathways coupled to enhanced phosphatidylinositol turnover in cardiac cells must be avoided. In addition, the data presented in this study clearly indicated that an increase in cytosolic free Ca2+ was not necessary for the induction of alpha 1-adrenergic-mediated cardiac hypertrophy.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

C A Hansen, and S K Joseph, and J D Robishaw
February 2005, Journal of cellular physiology,
C A Hansen, and S K Joseph, and J D Robishaw
August 1999, The Biochemical journal,
C A Hansen, and S K Joseph, and J D Robishaw
November 1998, Cardiovascular research,
C A Hansen, and S K Joseph, and J D Robishaw
June 1994, The Journal of biological chemistry,
C A Hansen, and S K Joseph, and J D Robishaw
December 2011, Autophagy,
C A Hansen, and S K Joseph, and J D Robishaw
March 1994, Clinical and experimental pharmacology & physiology,
C A Hansen, and S K Joseph, and J D Robishaw
August 1999, Trends in neurosciences,
C A Hansen, and S K Joseph, and J D Robishaw
January 1992, Advances in second messenger and phosphoprotein research,
C A Hansen, and S K Joseph, and J D Robishaw
April 1991, Biochemical Society transactions,
Copied contents to your clipboard!