Membrane translocation and regulation of uridine diphosphate-glucuronic acid uptake in rat liver microsomal vesicles. 1995

C L Berg, and A Radominska, and R Lester, and J L Gollan
Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

OBJECTIVE Hepatic glucuronidation is quantitatively the most important conjugation reaction by which an array of endogenous compounds and xenobiotics undergo biotransformation and detoxification. The active site of the uridine diphosphate (UDP) glucuronosyltransferases, which catalyze glucuronidation reactions, has been postulated to reside in the lumen of the endoplasmic reticulum. The aim of this study was to characterize the process whereby UDP glucuronic acid (UDP-GlcUA), the cosubstrate for all glucuronidation reactions, is transported into microsomal vesicles. METHODS The uptake process was analyzed using rapid filtration techniques, radiolabeled UDP-GlcUA, and rat liver microsomes. RESULTS Uptake was saturable with respect to time and concentration, inhibited by 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothio-cyanatostilbene-2-2'-disulfonic acid, and was osmotically sensitive. Transport was stimulated by Mg2+ and guanosine triphosphate (50 mumol/L) but not guanosine 5'-O-(3-thiotriphosphate) or adenosine triphosphate. Luminal UDP-N-acetylglucosamine (1 mmol/L) produced enhanced uptake of UDP-GlcUA (trans stimulation). In contrast to nucleotide sugar transport in the Golgi apparatus, trans uridine monophosphate and UDP did not alter UDP-GlcUA transport in microsomes, indicating distinct processes. CONCLUSIONS These data provide unambiguous evidence for the existence of a unique, substrate-specific, regulated, carrier-mediated process that transports UDP-GlcUA into the lumen of hepatocyte microsomes. This transporter may regulate glucuronidation in vivo.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009995 Osmosis Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane. Osmoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014530 Uridine Diphosphate A uracil nucleotide containing a pyrophosphate group esterified to C5 of the sugar moiety. UDP,Uridine Pyrophosphate,Diphosphate, Uridine,Pyrophosphate, Uridine
D014535 Uridine Diphosphate Glucuronic Acid A nucleoside diphosphate sugar which serves as a source of glucuronic acid for polysaccharide biosynthesis. It may also be epimerized to UDP iduronic acid, which donates iduronic acid to polysaccharides. In animals, UDP glucuronic acid is used for formation of many glucosiduronides with various aglycones. UDP Glucuronic Acid,UDPGA,Uridine Diphosphoglucuronic Acid,Acid, UDP Glucuronic,Acid, Uridine Diphosphoglucuronic,Diphosphoglucuronic Acid, Uridine,Glucuronic Acid, UDP
D014542 Uridine Monophosphate 5'-Uridylic acid. A uracil nucleotide containing one phosphate group esterified to the sugar moiety in the 2', 3' or 5' position. UMP,Uridylic Acid,Uridine 5'-Monophosphate,Uridylic Acids,5'-Monophosphate, Uridine,Acid, Uridylic,Acids, Uridylic,Monophosphate, Uridine,Uridine 5' Monophosphate

Related Publications

C L Berg, and A Radominska, and R Lester, and J L Gollan
April 1974, The Biochemical journal,
C L Berg, and A Radominska, and R Lester, and J L Gollan
March 1962, Chemical & pharmaceutical bulletin,
C L Berg, and A Radominska, and R Lester, and J L Gollan
August 1971, The Journal of biological chemistry,
C L Berg, and A Radominska, and R Lester, and J L Gollan
February 1961, Nature,
C L Berg, and A Radominska, and R Lester, and J L Gollan
February 1955, The Biochemical journal,
C L Berg, and A Radominska, and R Lester, and J L Gollan
April 1955, The Biochemical journal,
C L Berg, and A Radominska, and R Lester, and J L Gollan
March 1953, The Biochemical journal,
C L Berg, and A Radominska, and R Lester, and J L Gollan
September 1957, The Journal of biological chemistry,
Copied contents to your clipboard!