Partial reactions of the Na,K-ATPase: determination of rate constants. 1994

S Heyse, and I Wuddel, and H J Apell, and W Stürmer
Department of Biology, University of Konstanz, Germany.

Experiments were designed to characterize several partial reactions of the Na,K-ATPase and to demonstrate that a model can be defined that reproduces most of the transport features of the pump with a single set of kientic parameters. We used the fluorescence label 5-iodoacetamidofluorescein, which is thought to be sensitive to conformational changes, and the styryl dye RH 421, which can be applied to detect ion-binding and -release reactions. In addition transient electric currents were measured, which are associated mainly with the E1-->E2 conformational transition. Numerical simulations were performed on the basis of a reaction model, that has been developed from the Post-Albers cycle. Analysis of the experimental data allows the determination of several rate constants of the pump cycle. Our conclusions may be summarized as follows: (a) binding of one Na+ ion at the cytoplasmic face is electrogenic. This Na+ ion is specifically bound to a neutral binding site with an affinity of 8 mM in the presence of 10 mM Mg2+. In the absence of divalent cations, the intrinsic binding affinity was found to be 0.7 mM. (b) The analysis of fluorescence experiments with the cardiotonic steroid strophanthidin indicates that the 5-iodoacetamidofluorescein label monitors the conformational transition (Na3)E1-P-->P-E2(Na2), which is accompanied by the release of one Na+ ion. 5-IAF does not respond to the release of the subsequent two Na+ ions, which can be monitored by the RH 421 dye. These experiments indicate further that the conformational transition E1P-->P-E2 is the rate limiting process of the Na+ translocation. The corresponding rate constant was determined to be 22 s-1 at 20 degrees C. From competition experiments with cardiotonic steroids, we estimated that the remaining 2 Na+ ions are released subsequently with a rate constant of at least 5,000 s-1 from their negatively charged binding sites. (c) Comparing the fluorescence experiments with electric current transients, which were performed at various Na concentrations in the absence and presence of strophanthidin, we found that the transition (Na3).E1-P-->P-E2.(Na2) is the major charge translocating step in the reaction sequence Na3.E1-->(Na3).E1-P-->P-E2.(Na2)-->P-E2. The subsequent release of 2 Na+ ions contributed less than 25% to the total electric current transient. (d) The well known antagonism between cardiotonic steroids and K+ binding can be explained by a kinetic model. A quantitative description has been obtained under the assumption that these inhibitors bind only to the states P-E2(Na2) and P-E2(K2).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002301 Cardiac Glycosides Cyclopentanophenanthrenes with a 5- or 6-membered lactone ring attached at the 17-position and SUGARS attached at the 3-position. Plants they come from have long been used in congestive heart failure. They increase the force of cardiac contraction without significantly affecting other parameters, but are very toxic at larger doses. Their mechanism of action usually involves inhibition of the NA(+)-K(+)-EXCHANGING ATPASE and they are often used in cell biological studies for that purpose. Cardiac Glycoside,Cardiotonic Steroid,Cardiotonic Steroids,Glycoside, Cardiac,Glycosides, Cardiac,Steroid, Cardiotonic,Steroids, Cardiotonic
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular

Related Publications

S Heyse, and I Wuddel, and H J Apell, and W Stürmer
September 1992, Biochimica et biophysica acta,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
July 2006, The Journal of general physiology,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
December 2020, The Journal of membrane biology,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
October 1978, Biochimica et biophysica acta,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
January 1974, Annals of the New York Academy of Sciences,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
March 1997, The Journal of membrane biology,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
September 2009, Biochemistry,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
August 1998, Acta physiologica Scandinavica. Supplementum,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
January 1974, Annals of the New York Academy of Sciences,
S Heyse, and I Wuddel, and H J Apell, and W Stürmer
July 1999, Biophysical journal,
Copied contents to your clipboard!