Pronounced changes in the activity of nociceptive modulatory neurons in the rostral ventromedial medulla in response to prolonged thermal noxious stimuli. 1994

M M Morgan, and H L Fields
Department of Psychology, Washington State University, Vancouver 98663.

1. Brain regions that inhibit nociception can be activated by various environmental stimuli, including prolonged noxious stimuli. The present study tested the effect of such a prolonged noxious stimulus on the activity of nociceptive modulatory neurons in the rostral ventromedial medulla (RVM). These neurons, called ON- and OFF-cells because of their respective burst and pause in activity associated with nocifensor reflexes, have been shown to facilitate and inhibit nociception, respectively. 2. Single-unit activity of ON- and OFF-cells was assessed in lightly halothane- or barbiturate-anesthetized rats exposed to prolonged noxious heat (50 degrees C water). This prolonged noxious stimulus caused an increase in ON-cell and a decrease in OFF-cell activity regardless of anesthetic (halothane or barbiturate) or stimulus location (hindpaw or tail). 3. Surprisingly, and despite the consistent changes in RVM cell activity, the prolonged noxious stimulus caused different effects depending on the reflex used to assess nociception. The hindpaw withdrawal reflex was facilitated when the tail was immersed in hot water, whereas the tail flick reflex was inhibited when the hindpaw was immersed in hot water (see preceding manuscript). Lidocaine inactivation of the RVM shortened the latency for both reflexes but had no effect on tail flick inhibition produced by the noxious conditioning stimulus. In contrast, lidocaine inactivation of the RVM completely reversed the hindpaw reflex facilitation produced by tail heat, indicating the involvement of RVM ON-cells in facilitation of this reflex. 4. These data demonstrate that RVM neurons respond in a consistent manner to noxious stimuli whether applied for a brief or prolonged time: ON-cell activity increases and OFF-cell activity decreases. Moreover, the activation of RVM ON-cells produced by a noxious stimulus is sufficient to enhance some nocifensor reflexes, whereas neural structures other than the RVM appear to mediate the antinociceptive effects produced by a prolonged noxious stimulus.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs

Related Publications

M M Morgan, and H L Fields
January 1997, The Journal of comparative neurology,
M M Morgan, and H L Fields
December 1989, The American journal of physiology,
Copied contents to your clipboard!