Immortalization of immature and mature mouse astrocytes with SV40 T antigen. 1994

P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4944.

The ability of neonatal astrocytes to promote neurite outgrowth in vitro and in vivo diminishes as astrocytes mature. This property correlates with the developmental loss of the central nervous system's ability to regenerate after injury. Cell lines representative of immature and mature astrocytes would be useful for studies to determine differences between these two populations. Previous work on immortalization of bipotential neural/glial precursors and fully differentiated glial cells suggests that immortalization of astrocytes at timed intervals of culture may yield cell lines trapped in different maturation states. To test this, neonatal mouse cortical astrocytes were immortalized by retrovirus-mediated transfer of the SV40 T antigen (Tag) gene at 2, 6 and 17 days of culture. The clonal cell lines express Tag and are contact-inhibited. Three phenotypes that change as a function of astrocyte maturation were examined to determine the fidelity with which the cell lines represent immature and mature astrocytes. These were: (1) cell morphology, growth pattern and size, (2) level of glial fibrillary acidic protein (GFAP) expression, and (3) neurite outgrowth promotion. First, immature and mature lines resemble mortal type 1 astrocytes of corresponding ages with respect to morphology and growth pattern, and retain a quantitative difference in cell size (mature cells are larger). Second, the pattern of GFAP expression is preserved, with immature lines expressing lower levels than mature cell lines, but the overall GFAP levels are significantly lower in immortalized cell lines compared to mortal cells. Finally, promotion of neurite outgrowth from embryonic chick retinal ganglion cells on monolayers of the cell lines was examined. While all neurite outgrowth measures are significantly greater for the immortalized lines than for control 3T3 cells, they are attenuated relative to mortal astrocytes. The age-related pattern of stronger outgrowth support on immature astrocytes is retained for neurite initiation, but not retained for mean neurite length. Thus, SV40 Tag-immortalized astrocytes have a complex phenotype characterized by retention of age-related differences in morphology, growth pattern and cell size, and by a marked attenuation of some astrocyte-specific characteristics but retention of age-related differences in the expression level of these same characteristics, and finally, loss of the ability to support neurite extension at level characteristic of immature astrocytes.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003260 Contact Inhibition Arrest of cell locomotion or cell division when two cells come into contact. Inhibition, Contact,Contact Inhibitions,Inhibitions, Contact
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
April 2010, Genesis (New York, N.Y. : 2000),
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
March 1995, In vitro cellular & developmental biology. Animal,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
May 1995, Journal of immunology (Baltimore, Md. : 1950),
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
July 2023, Genes & diseases,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
May 1999, In vitro cellular & developmental biology. Animal,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
March 2001, In vitro cellular & developmental biology. Animal,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
May 2023, Gene,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
December 1995, Oncogene,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
May 1993, Experimental cell research,
P S Frisa, and M N Goodman, and G M Smith, and J Silver, and J W Jacobberger
January 2004, Nucleic acids research,
Copied contents to your clipboard!