Gating properties of mutant acetylcholine receptors. 1994

M L Aylwin, and M M White
Department of Physiology, Medical College of Pennsylvania, Philadelphia 19129.

A number of affinity labeling studies have identified several tyrosine residues in the alpha subunit of the nicotinic acetylcholine receptor as being in or near the ligand binding site. Studies employing site-directed mutagenesis of these residues (alpha Y93, alpha Y190, and alpha Y198; the notation used is subunit/amino acid/position in the Torpedo receptor/substitution) in mouse muscle, Torpedo electroplax, and alpha 7 neuronal acetylcholine receptors have demonstrated that substitution of phenylalanine for tyrosine results in a shift towards higher concentrations in the macroscopic dose-response curves for acetylcholine-elicited currents from voltage-clamped Xenopus oocytes that express the receptors. This decrease in apparent affinity has been ascribed to either a reduction in binding affinity or a reduction in the coupling of agonist binding to ion channel opening; both mechanisms would give rise to shifts in the dose-response curves. We have used kinetic analysis of ion channel gating at the single-channel level to obtain estimates for the rate constants associated with the ligand binding and channel opening steps for wild-type, alpha Y93F, and alpha Y198F receptors. The results suggest that the underlying cause of the shifts in the macroscopic dose-response curves is a reduction in acetylcholine affinity for the resting activatable state of the receptor. Furthermore, it is the association rate for agonist binding, rather than the dissociation rate, that is most affected by the mutations.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M L Aylwin, and M M White
August 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M L Aylwin, and M M White
February 2010, The Journal of physiology,
M L Aylwin, and M M White
December 2015, The Journal of general physiology,
M L Aylwin, and M M White
January 2013, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
M L Aylwin, and M M White
January 1994, Renal physiology and biochemistry,
M L Aylwin, and M M White
February 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!