Structural basis for the difference in thermodynamic properties between the two cysteine proteinase inhibitors human stefins A and B. 1994

R Jerala, and E Zerovnik, and K Lohner, and V Turk
Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenija.

Homology modelling has been used to model stefin A based on the X-ray structure of stefin B. Several models have been produced by interactive modelling or positioning of the side chains by Monte Carlo procedure with simulated annealing. The quality of models was evaluated by calculation of the free energy of hydration, 3D-1D potential or buried area of surface accessibility. Stefin A is a thermostable protein, exhibiting a two-state denaturation, while stefin B denatures at a 40 degrees C lower temperature and forms a stable molten globule intermediate under mild denaturing conditions. From the tertiary structures, thermodynamic functions were predicted, conforming closely to the experimental calorimetric results. Polar and apolar buried areas of surface accessibility were obtained by structural deconvolution of the thermograms. It is suggested that the basic difference between the stefins is the domination of hydrophobic interaction in the stabilization of stefin B, which is due to its non-specific nature leading to the formation of a molten globule intermediate. Modelling of stefin A predicts increased numbers of hydrogen bonds which stabilize it and increase the cooperativity of its denaturation.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot

Related Publications

R Jerala, and E Zerovnik, and K Lohner, and V Turk
May 1988, Biological chemistry Hoppe-Seyler,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
January 1986, Biomedica biochimica acta,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
January 1985, Placenta,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
July 1997, Clinical & experimental metastasis,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
July 1994, International journal of oncology,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
May 1988, Biological chemistry Hoppe-Seyler,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
October 1996, FEBS letters,
R Jerala, and E Zerovnik, and K Lohner, and V Turk
May 1988, Biological chemistry Hoppe-Seyler,
Copied contents to your clipboard!