Comparisons of eukaryotic genomic sequences. 1994

S Karlin, and I Ladunga
Department of Mathematics, Stanford University, CA 94305-2125.

A method for assessing genomic similarity based on relative abundances of short oligonucleotides in large DNA samples is introduced. The method requires neither homologous sequences nor prior sequence alignments. The analysis centers on (i) dinucleotide (and tri- and tetra-) relative abundance extremes in genomic sequences, (ii) distances between sequences based on all dinucleotide relative abundance values, and (iii) a multidimensional partial ordering protocol. The emphasis in this paper is on assessments of general relatedness of genomes as distinguished from phylogenetic reconstructions. Our methods demonstrate that the relative abundance distances almost always differ more for genomic interspecific sequence comparisons than for genomic intraspecific sequence comparisons, indicating congruence over different genome sequence samples. The genomic comparisons are generally concordant with accepted phylogenies among vertebrate and among fungal species sequences. Several unexpected relationships between the major groups of metazoa, fungal, and protist DNA emerge, including the following. (i) Schizosaccharomyces pombe and Saccharomyces cerevisiae in dinucleotide relative abundance distances are as similar to each other as human is to bovine. (ii) S. cerevisiae, although substantially far from, is significantly closer to the vertebrates than are the invertebrates (Drosophila melanogaster, Bombyx mori, and Caenorhabditis elegans). This phenomenon may suggest variable evolutionary rates during the metazoan radiations and slower changes in the fungal divergences, and/or a polyphyletic origin of metazoa. (iii) The genomic sequences of D. melanogaster and Trypanosoma brucei are strikingly similar. This DNA similarity might be explained by some molecular adaptation of the parasite to its dipteran (tsetse fly) host, a host-parasite gene transfer hypothesis. Robustness of the methods may be due to a genomic signature of dinucleotide relative abundance values reflecting DNA structures related to dinucleotide stacking energies, constraints of DNA curvature, and mechanisms attendant to replication, repair, and recombination.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA

Related Publications

S Karlin, and I Ladunga
January 1995, Proceedings. International Conference on Intelligent Systems for Molecular Biology,
S Karlin, and I Ladunga
November 2001, Bioinformatics (Oxford, England),
S Karlin, and I Ladunga
July 2001, Genome research,
S Karlin, and I Ladunga
April 2010, BMC genomics,
S Karlin, and I Ladunga
December 2003, Current opinion in genetics & development,
S Karlin, and I Ladunga
November 2012, Mobile DNA,
S Karlin, and I Ladunga
February 2006, Environmental microbiology,
Copied contents to your clipboard!