Impaired glucose transport in skeletal muscle but normal GLUT-4 tissue distribution in glucose-infused rats. 1994

M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
Department of Medicine, Cedars-Sinai Medical Center, University of California at Los Angeles 90048.

This study was undertaken to determine if glucose toxicity in normal rats caused decreased whole body insulin-stimulated glucose disposal and in vivo impaired muscle glucose transport and, if so, whether it was mediated by changes in GLUT-4 content or tissue distribution. Rats were infused with 50% dextrose for 48 h after which they were clamped and injected with 2-deoxy-D-[3H]glucose. Hindlimb muscles were removed for measurement of uptake of radioactivity (glucose transport) and GLUT-4 levels in total, plasma and internal membrane fractions. Dextrose infusions caused significant hyperglycemia [15.5 +/- 1.4 vs. 6.7 +/- 0.3 (SE) mM], hyperinsulinemia [678 +/- 108 vs. 168 +/- 42 (SE) pM], and depressed insulin-mediated whole body glucose disposal [12.8 +/- 2.0 vs. 47.0 +/- 10.6 (SE) mg glucose.kg-1.min-1.pmol insulin-1.1(-1) x 10(3)]. Muscle glucose transport (ng.min-1.mg tissue-1) was significantly decreased in biceps (4.0 +/- 0.6 vs. 13.4 +/- 2.5), gastrocnemius (4.6 +/- 1.1 vs. 12.9 +/- 2.2), and plantaris (5.5 +/- 0.7 vs. 17.5 +/- 3.6) muscles compared with saline-infused rats. The difference in the soleus muscle (13.2 +/- 1.6 vs. 19.4 +/- 2.7) did not quite reach statistical significance. There were no differences in total, plasma, or internal membrane GLUT-4 content between the two groups. It is concluded that glucose toxicity causes impaired insulin-stimulated glucose transport, probably due to decreased activity of GLUT-4.

UI MeSH Term Description Entries
D008297 Male Males
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009597 4-Nitrophenylphosphatase An enzyme that catalyzes the hydrolysis of nitrophenyl phosphates to nitrophenols. At acid pH it is probably ACID PHOSPHATASE (EC 3.1.3.2); at alkaline pH it is probably ALKALINE PHOSPHATASE (EC 3.1.3.1). EC 3.1.3.41. 4-Nitrophenyl Phosphatase,K+-NPPase,K-Dependent p-Nitrophenylphosphatase,K-p NPPase,Nitrophenyl Phosphatase,p-NPPase,p-Nitrophenylphosphatase,para-Nitrophenyl Phosphatase,para-Nitrophenylphosphatase,4 Nitrophenyl Phosphatase,4 Nitrophenylphosphatase,K Dependent p Nitrophenylphosphatase,K p NPPase,K+ NPPase,p NPPase,p Nitrophenylphosphatase,p-Nitrophenylphosphatase, K-Dependent,para Nitrophenyl Phosphatase,para Nitrophenylphosphatase
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051275 Glucose Transporter Type 4 A glucose transport protein found in mature MUSCLE CELLS and ADIPOCYTES. It promotes transport of glucose from the BLOOD into target TISSUES. The inactive form of the protein is localized in CYTOPLASMIC VESICLES. In response to INSULIN, it is translocated to the PLASMA MEMBRANE where it facilitates glucose uptake. GLUT-4 Protein,GLUT4 Protein,Insulin-Responsive Glucose Transporter,SLC2A4 Protein,Solute Carrier Family 2, Facilitated Glucose Transporter, Member 4 Protein,GLUT 4 Protein,Glucose Transporter, Insulin-Responsive,Insulin Responsive Glucose Transporter
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
April 1998, The American journal of physiology,
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
May 1995, The American journal of physiology,
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
July 1994, The American journal of physiology,
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
December 1997, Journal of applied physiology (Bethesda, Md. : 1985),
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
October 1996, The American journal of physiology,
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
August 1996, The American journal of physiology,
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
September 1994, Journal of applied physiology (Bethesda, Md. : 1985),
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
July 2011, Medicine and science in sports and exercise,
M B Davidson, and C Bouch, and N Venkatesan, and R G Karjala
May 1998, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!