Effect of starvation on lipoprotein lipase activity in different tissues during gestation in the rat. 1994

P López-Luna, and J Olea, and E Herrera
Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, Madrid, Spain.

This study was addressed to determine whether the tissue-specific LPL activity response to fasting differs between nonpregnant and pregnant rats over the course of pregnancy. Fed and 24-h fasted rats were studied at days 12, 15 or 20 of gestation and were compared to virgin controls. In fed rats at days 15 and 20 of gestation LPL activity decreased in lumbar adipose tissue and the heart and liver, and increased in mammary gland tissue. Fasting decreased LPL activity in lumbar adipose tissue in 12 day pregnant and virgin rats and in mammary gland tissue in pregnant rats at 15 and 20 days of gestation and in virgin rats, whereas it increased LPL activity in heart tissue in rats at day 15 and 20 and in liver at day 20 of gestation. Plasma triacylglycerols were higher in 20 day pregnant rats than in the other groups when fed and this difference was even more noticeable in the fasting condition where the plasma beta-hydroxybutyrate level also reached the highest value in the 20 day pregnant rats. Since tissue LPL activity controls the hydrolysis and uptake of circulating triacylgylcerols, the present results indicate that in fed rats after the 15th day of gestation circulating triacylglycerols are preferentially taken up by the mammary gland instead of being taken up by adipose tissue and heart. However, after fasting, circulating triacylglycerols are driven to the heart and liver in the late pregnant rat, and become a major source for fatty acid oxidation, an effect that seems to be specially evident in the liver of the 20 day pregnant rat where there is an intense increase in LPL activity and the triacylglycerols become preferential substrates for ketone body production.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013217 Starvation Lengthy and continuous deprivation of food. (Stedman, 25th ed)

Related Publications

P López-Luna, and J Olea, and E Herrera
January 1979, Voprosy pitaniia,
P López-Luna, and J Olea, and E Herrera
June 1988, Metabolism: clinical and experimental,
P López-Luna, and J Olea, and E Herrera
March 1990, Biochimica et biophysica acta,
P López-Luna, and J Olea, and E Herrera
February 1985, Biochimica et biophysica acta,
P López-Luna, and J Olea, and E Herrera
March 1977, The American journal of physiology,
P López-Luna, and J Olea, and E Herrera
April 1989, Journal of lipid research,
P López-Luna, and J Olea, and E Herrera
June 1961, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P López-Luna, and J Olea, and E Herrera
June 1991, Biochemical pharmacology,
P López-Luna, and J Olea, and E Herrera
January 1981, Biology of the neonate,
Copied contents to your clipboard!