An electrophysiological basis for the antiarrhythmic actions of the kappa-opioid receptor agonist U-50,488H. 1994

M K Pugsley, and D A Saint, and M J Walker
Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.

This study examined the actions of the selective kappa-opioid receptor agonist, U-50,488H, on voltage activated Na+ and K+ currents in isolated rat cardiac myocytes. U-50,488H produced a concentration-dependent block of the transient Na+ current with an ED50 of about 15 microM, and, at higher concentrations (40-50 microM), a block of the plateau K+ current and an increase in the rate of decay of the transient K+ current. In addition U-50,488H produced a hyperpolarising shift in the inactivation curve for the transient Na+ current without altering the voltage dependence for activation and without an effect on the voltage dependence of inactivation or activation of K+ currents. The block of Na+ currents by U-50,488H showed pronounced use dependence. The kappa-opioid receptor antagonist MR2266 did not itself produce any change in the Na+ or K+ currents and did not change the channel blocking properties of U-50,488H. Thus, since the antiarrhythmic actions of U-50,488H are not blocked by MR2266 or naloxone, the effects of U-50,488H to block Na+ and K+ currents are the most likely reasons for its antiarrhythmic actions, rather than an action at kappa-opioid receptors.

UI MeSH Term Description Entries
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000889 Anti-Arrhythmia Agents Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade. Anti-Arrhythmia Agent,Anti-Arrhythmia Drug,Anti-Arrhythmic,Antiarrhythmia Agent,Antiarrhythmia Drug,Antiarrhythmic Drug,Antifibrillatory Agent,Antifibrillatory Agents,Cardiac Depressant,Cardiac Depressants,Myocardial Depressant,Myocardial Depressants,Anti-Arrhythmia Drugs,Anti-Arrhythmics,Antiarrhythmia Agents,Antiarrhythmia Drugs,Antiarrhythmic Drugs,Agent, Anti-Arrhythmia,Agent, Antiarrhythmia,Agent, Antifibrillatory,Agents, Anti-Arrhythmia,Agents, Antiarrhythmia,Agents, Antifibrillatory,Anti Arrhythmia Agent,Anti Arrhythmia Agents,Anti Arrhythmia Drug,Anti Arrhythmia Drugs,Anti Arrhythmic,Anti Arrhythmics,Depressant, Cardiac,Depressant, Myocardial,Depressants, Cardiac,Depressants, Myocardial,Drug, Anti-Arrhythmia,Drug, Antiarrhythmia,Drug, Antiarrhythmic,Drugs, Anti-Arrhythmia,Drugs, Antiarrhythmia,Drugs, Antiarrhythmic
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

M K Pugsley, and D A Saint, and M J Walker
March 1992, British journal of pharmacology,
M K Pugsley, and D A Saint, and M J Walker
June 1987, European journal of pharmacology,
M K Pugsley, and D A Saint, and M J Walker
December 1998, Journal of autonomic pharmacology,
M K Pugsley, and D A Saint, and M J Walker
February 1993, The Journal of pharmacology and experimental therapeutics,
M K Pugsley, and D A Saint, and M J Walker
December 1994, The Journal of pharmacology and experimental therapeutics,
M K Pugsley, and D A Saint, and M J Walker
June 2004, European journal of pharmacology,
M K Pugsley, and D A Saint, and M J Walker
January 1982, Life sciences,
M K Pugsley, and D A Saint, and M J Walker
March 1990, European journal of pharmacology,
M K Pugsley, and D A Saint, and M J Walker
September 2002, Journal of neural transmission (Vienna, Austria : 1996),
Copied contents to your clipboard!