Ornithine decarboxylase and S-adenosylmethionine decarboxylase expression during the cell cycle of Chinese hamster ovary cells. 1995

J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
Department of Animal Physiology, University of Lund, Sweden.

Cells in mitosis were harvested from exponentially growing Chinese hamster ovary cells by the mitotic detachment technique. Immediately after harvesting, the mitotic cells were seeded in tissue culture flasks and incubated at 37 degrees C in a CO2 incubator. Care was taken not to perturb the progression of cells through the cell cycle. At every hour after seeding for 14 h, cells were collected for analysis of cell cycle distribution, cellular polyamine content, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) activities, and relative mRNA contents. The progression through the cell cycle was monitored by DNA flow cytometry. The putrescine, spermidine, and spermine levels were approximately doubled during the cell cycle: putrescine mainly during late S and G2, spermidine continuously during the entire cell cycle, and spermine mainly during G1 and S. The ODC activity was low in seeded mitotic cells and the enzyme was activated in late G1 and reached a plateau in S phase. A second burst in activity was observed during late S phase and maximal ODC activity was found at the S/G2 transition. The relative ODC mRNA level approximately doubled during the cell cycle and the increase in the relative level mainly took part during mid and late S phase. AdoMetDC activity increased in late G1 and a first maximum was observed during the G1/S transition. A second burst in activity was found in mid S phase. Maximal AdoMetDC activity was found in G2. The relative AdoMetDC mRNA approximately doubled during the cell cycle and the increase in the relative level mainly took place during late G1 and early S phase. Our results indicate that polyamine synthesis was regulated at transcriptional and translational/post-translational levels during the cell cycle of Chinese hamster ovary cells.

UI MeSH Term Description Entries
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012437 Adenosylmethionine Decarboxylase An enzyme that catalyzes the decarboxylation of S-adenosyl-L-methionine to yield 5'-deoxy-(5'-),3-aminopropyl-(1), methylsulfonium salt. It is one of the enzymes responsible for the synthesis of spermidine from putrescine. EC 4.1.1.50. S-Adenosylmethionine Decarboxylase,Decarboxylase, Adenosylmethionine,Decarboxylase, S-Adenosylmethionine,S Adenosylmethionine Decarboxylase
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
September 1999, Biochemical and biophysical research communications,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
October 1997, European journal of biochemistry,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
February 1995, The Journal of biological chemistry,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
April 1990, Cancer research,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
April 1982, The Journal of biological chemistry,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
January 1983, Methods in enzymology,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
June 1986, The Biochemical journal,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
January 1988, Advances in experimental medicine and biology,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
December 1990, Biochemical Society transactions,
J O Fredlund, and M C Johansson, and E Dahlberg, and S M Oredsson
November 1984, In vitro,
Copied contents to your clipboard!