Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards' proposed standard. 1994

F Barchiesi, and A L Colombo, and D A McGough, and M G Rinaldi
Department of Pathology, University of Texas Health Science Center, San Antonio 78284-7750.

A comparative study of broth macro- and microdilution methods for susceptibility testing of fluconazole, itraconazole, flucytosine, and amphotericin B was conducted with 273 yeasts. The clinical isolates included 100 Candida albicans, 28 Candida tropicalis, 25 Candida parapsilosis, 15 Candida lusitaniae, 15 Candida krusei, 50 Cryptococcus neoformans var. neoformans, 25 Torulopsis (Candida) glabrata, and 15 Trichosporon beigelii strains. Both methods were performed according to the National Committee for Clinical Laboratory Standards' (NCCLS) recommendations (document M27-P). For fluconazole, itraconazole, and flucytosine, the endpoint was the tube that showed 80% growth inhibition compared with the growth control for the macrodilution method and the well with slightly hazy turbidity (score 1) compared with the growth control for the microdilution method. For amphotericin B, the endpoint was the tube and/or well in which there was absence of growth. For the reference macrodilution method, the MICs were determined after 48 h of incubation for Candida spp., T. glabrata, and T. beigelii and after 72 h for C. neoformans var. neoformans. For the microdilution method, either the first-day MICs (24 h for all isolates other than C. neoformans and 48 h for C. neoformans var. neoformans) or the second-day MICs (48 and 72 h, respectively) were evaluated. The agreement within one doubling dilution of the macrodilution reference for all drugs was higher with the second-day MICs than with the first-day MICs for the microdilution test for most of the tested strains. General agreement was 92% for fluconazole, 85.7% for itraconazole, 98.3% for flucytosine, and 96.4% for amphotericin B. For C. neoformans var. neoformans and T. beigelii, the agreement of the first-day reading was higher than that of the second-day reading for fluconazole (94 versus 92%, respectively, for C. neoformans var. neoformans, and 86.7 versus 80%, respectively, for T. beigelii). Our studies indicate that the microdilution technique performed following the NCCLS guidelines with a second-day reading is a valid alternative method for testing fluconazole, itraconazole, flucytosine, and amphotericin B against these eight species of yeasts.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

F Barchiesi, and A L Colombo, and D A McGough, and M G Rinaldi
June 1991, Journal of clinical microbiology,
F Barchiesi, and A L Colombo, and D A McGough, and M G Rinaldi
October 1995, Journal of clinical microbiology,
F Barchiesi, and A L Colombo, and D A McGough, and M G Rinaldi
April 1996, Journal of clinical microbiology,
F Barchiesi, and A L Colombo, and D A McGough, and M G Rinaldi
December 1992, Journal of clinical microbiology,
Copied contents to your clipboard!