Nuclear origin of specific yeast mitochondrial aminoacyl-tRNA synthetases. 1976

J M Schneller, and C Schneller, and R Martin, and A J Stahl

Hydroxylapatite chromatographies of mitochondrial and total enzymes from a rho+ yeast, or from the related rho degrees mitochondrial DNA-less mutant, show the occurrence in the mitochondrial enzyme of one Phe-, one Met-, one Leu-tRNA synthetase peak which elutes distinctly from the cytoplasmic counterpart and charges well mitochondrial tRNA, whereas the cytoplasmic enzyme does not. The measurement of the mitochondrial synthetases activities in various enzymatic extracts shows that they are not repressed in rho+ cells grown on 10% glucose and that they are concentrated in the mitochondria (Phe- and Met- tRNA synthetases) but are also present outside the mitochondria. It is concluded that yeast mitochondrial protein biosynthesis involves the nuclear coded mitochondrial specific Phe-, Met- and Leu-tRNA synthetases and that the entrance of the synthetases into the mitochondria needs no factor depending on the mitochondrial DNA.

UI MeSH Term Description Entries
D007935 Leucine-tRNA Ligase An enzyme that activates leucine with its specific transfer RNA. EC 6.1.1.4. Leucyl T RNA Synthetase,Leu-tRNA Ligase,Leucine-tRNA Synthetase,Leu tRNA Ligase,Leucine tRNA Ligase,Leucine tRNA Synthetase,Ligase, Leu-tRNA,Ligase, Leucine-tRNA,Synthetase, Leucine-tRNA
D008718 Methionine-tRNA Ligase An enzyme that activates methionine with its specific transfer RNA. EC 6.1.1.10. Methionyl T RNA Synthetase,Met-tRNA Ligase,Methionyl-tRNA Synthetase,Ligase, Met-tRNA,Ligase, Methionine-tRNA,Met tRNA Ligase,Methionine tRNA Ligase,Methionyl tRNA Synthetase,Synthetase, Methionyl-tRNA
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction

Related Publications

J M Schneller, and C Schneller, and R Martin, and A J Stahl
January 1990, Progress in nucleic acid research and molecular biology,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
January 2020, The Enzymes,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
March 2007, Molecular biology and evolution,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
January 2017, Methods (San Diego, Calif.),
J M Schneller, and C Schneller, and R Martin, and A J Stahl
April 2013, Molecular genetics and metabolism,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
January 1968, Comptes rendus des seances de la Societe de biologie et de ses filiales,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
June 1967, Proceedings of the National Academy of Sciences of the United States of America,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
February 1995, Current opinion in structural biology,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
December 1997, Current opinion in structural biology,
J M Schneller, and C Schneller, and R Martin, and A J Stahl
January 2017, Methods (San Diego, Calif.),
Copied contents to your clipboard!