Stability studies on maize leaf phosphoenolpyruvate carboxylase: the effect of salts. 1995

W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
Department of Biochemistry, Monash University, Clayton, Victoria, Australia.

The solution stability of phosphoenolpyruvate carboxylase (PEPC) has been determined in the presence of various salts by temperature-accelerated enzyme inactivation and also by using high-performance size-exclusion chromatography. Kosmotropic (water structuring) anions in the Hofmeister series (HPO(4)2-, citrate3-, SO(4)2-, F-, OAc-) and glutamate stabilized the enzyme most effectively, while Cl- (a borderline Hofmeister anion) and Br- (a chaotropic anion) were destabilizing. The effects of the cations on PEPC stability ranged from relatively inert (Na+, K+) to destabilizing ((CH3)4N+, NH4+, Li+). The observed stabilization of PEPC by specific salts has been interpreted in terms of the positive surface tension increment and the water-structuring effects conferred on the solution by the specific stabilizing reagents. Both these effects enhance hydrophobic interactions of proteins and increase the energy required to enlarge the surface area of the solvent cavity in which the protein resides. The destabilization of PEPC by some salts at a concentration of 0.5 M was associated with the dissociation of the tetrameric enzyme into its dimeric and monomeric forms, a process most probably occurring as a result of ion-peptide dipole binding, which promotes protein-solvent interaction and a subsequent reduction in the free energy of cavity formation. The stabilization of enzyme activity by kosmotropic salts depended on the salt concentration with maximum stabilization of PEPC in solution at 52 degrees C observed with 0.6-0.8 M sodium glutamate, 2 M KF, and 2.2 M KOAc. Higher concentrations of these salts resulted in decreased activity. This reduction in activity of PEPC in the presence of high concentrations of kosmotropic salts appears to be associated with irreversible conformational changes of the tetrameric enzyme.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D010730 Phosphoenolpyruvate Carboxylase An enzyme with high affinity for carbon dioxide. It catalyzes irreversibly the formation of oxaloacetate from phosphoenolpyruvate and carbon dioxide. This fixation of carbon dioxide in several bacteria and some plants is the first step in the biosynthesis of glucose. EC 4.1.1.31. Carboxylase, Phosphoenolpyruvate
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D012492 Salts Substances produced from the reaction between acids and bases; compounds consisting of a metal (positive) and nonmetal (negative) radical. (Grant & Hackh's Chemical Dictionary, 5th ed) Salt
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D018515 Plant Leaves Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed) Plant Leaf,Leaf, Plant,Leave, Plant,Leaves, Plant,Plant Leave

Related Publications

W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
October 1986, Plant physiology,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
December 1986, Plant physiology,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
December 1981, Biochemistry,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
July 1998, Biochimica et biophysica acta,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
May 2000, Plant physiology,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
August 1990, Photosynthesis research,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
January 1981, Plant physiology,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
June 1989, Plant physiology,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
July 1989, The Biochemical journal,
W A Jensen, and J M Armstrong, and J De Giorgio, and M T Hearn
April 1986, Plant physiology,
Copied contents to your clipboard!