Cloning and sequencing of a full-length rat sucrase-isomaltase-encoding cDNA. 1994

G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
Department of Biology, University of Houston, TX.

Sucrase-isomaltase (SI) has been widely used as a marker enzyme to study cellular differentiation in the small intestine. We isolated a 6.1-kb SI cDNA clone (GC1.4) from a size-fractionated cDNA library from rat intestine. Sequencing of this cDNA clone showed 6066 nucleotides (nt) with an open reading frame (ORF) of 1841 amino acids (aa). The nt sequence correctly predicts several known aa stretches in the protein. The deduced as sequence showed 78 and 75% overall identity with the rabbit and human SI, respectively. At the active sites of both S and I, the rat nt sequence encodes stretches of 14 and 16 aa, respectively, which show 100% identity to rabbit and human SI. In the region immediately beyond the transmembrane domain, the rat sequence encodes an extra 10 aa, as compared to rabbit and human. This 10-aa insertion consists almost entirely of Pro, Ser and Thr, and may be responsible for additional O-glycosylations of rat SI. The cDNA contains a 3'-UTR (untranslated region) of 499 nt with polyadenylation signal sequence and a poly(A) tract. The ATG start codon was found 41 nt downstream from the 5' end of the cDNA. Primer extension experiments showed the cap site to be 61 nt upstream from the start codon. The results indicate that our cDNA clone lacks only 20 nt in the 5'-UTR. Given that this cDNA encodes the entire coding region of SI, it should be useful in elucidating the regulatory mechanisms of SI biosynthesis, localization and targeting during rat intestinal development and differentiation.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013394 Sucrase-Isomaltase Complex An enzyme complex found in the brush border membranes of the small intestine. It is believed to be an enzyme complex with different catalytic sites. Its absence is manifested by an inherited disease called sucrase-isomaltase deficiency. Sucrase Isomaltase Complex,Complex, Sucrase Isomaltase,Complex, Sucrase-Isomaltase,Isomaltase Complex, Sucrase
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
February 1993, Biochimica et biophysica acta,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
September 1990, Biochimica et biophysica acta,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
August 1999, The Journal of veterinary medical science,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
December 1986, The Biochemical journal,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
January 1998, The Journal of biological chemistry,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
September 1989, The Journal of biological chemistry,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
July 1995, Plant physiology,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
October 2001, The Journal of veterinary medical science,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
July 1989, European journal of biochemistry,
G Chandrasena, and D E Osterholm, and I Sunitha, and S J Henning
June 2005, The Journal of parasitology,
Copied contents to your clipboard!