Energetics of low affinity amino acid transport into brain slices. 1976

M Banay-Schwartz, and D N Teller, and A Lajtha

It appears possible to dissect and study some of the potential energy sources for amino acid transport in brain slices despite the apparent complexity of the tissue in comparison to that of isolated bacterial vesicles23. The uptake capability of the tissue may be inadvertently damaged in some experimental protocols so that very special controls must be used to ensure that the treatment did not somehow inactivate the very mechanism that thereafter will be tested. We have presented some evidence that brain slice amino acid transport may not be obligatorily linked to glycolysis, ATP levels, Na+, K+-ATPase activity, K+ levels or direction of flux, or to Na+ flux. However, the energy source linkage for different amino acids appears to be rather specific, so that further generalizations are difficult to sustain. For instance, the incubation media and conditions we describe here were experimentally adjusted to maximize uptake of D-glu or alpha-AIB in the absence of glucose, or in lowered K+ or Na+. Therefore, these procedures, the results of which directly challenge some common assumptions regarding the energy basis for active transport in brain slices, probably will not be universally extensible to all other actively transported amino acids.

UI MeSH Term Description Entries
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M Banay-Schwartz, and D N Teller, and A Lajtha
March 1975, Journal of neurochemistry,
M Banay-Schwartz, and D N Teller, and A Lajtha
April 1963, Journal of neurochemistry,
M Banay-Schwartz, and D N Teller, and A Lajtha
December 1977, Neurochemical research,
M Banay-Schwartz, and D N Teller, and A Lajtha
August 1981, Acta physiologica Scandinavica,
M Banay-Schwartz, and D N Teller, and A Lajtha
November 1962, Canadian journal of biochemistry and physiology,
M Banay-Schwartz, and D N Teller, and A Lajtha
July 1975, The American journal of physiology,
M Banay-Schwartz, and D N Teller, and A Lajtha
November 1962, Canadian journal of biochemistry and physiology,
M Banay-Schwartz, and D N Teller, and A Lajtha
October 1972, European journal of pharmacology,
M Banay-Schwartz, and D N Teller, and A Lajtha
September 1989, Biochemistry,
M Banay-Schwartz, and D N Teller, and A Lajtha
December 1974, American journal of obstetrics and gynecology,
Copied contents to your clipboard!