Nicotinic and muscarinic activation of motoneurons in the crayfish locomotor network. 1994

D Cattaert, and A Araque, and W Buño, and F Clarac
Laboratoire de Neurobiologie et Mouvements, Centre National de la Recherche Scientifique, Marseille, France.

1. We investigated the effects of acetylcholine (Ach) on identified motoneurons (MNs) using an in vitro preparation of the crayfish thoracic nervous system. Discontinuous current-clamp and single electrode voltage-clamp recordings from 50 MNs were performed along with micropipette pressure ejection of Ach (or agonists) close to the recording electrode. 2. Localized ejections of relatively large volumes (500-2,500 pl) of Ach (10(-2) M) or of the muscarinic agonist oxotremorine (Oxo, 10(-2)M) onto the MN neuropile region, usually (90% of the cases) induced a slow, alternating rhythmic activity in antagonistic MNs. In other cases (4 experiments), with similar deliveries of Ach or Oxo, MNs developed the ability to fire rhythmically but only when depolarized by sustained current injection. Pressure ejections of smaller volumes (50-200 pl) of Ach (10(-2)M) close to the recorded MN could give rise to a fast (1-2 s) large amplitude (< or = 20 mV) membrane depolarization (12%), a long-lasting (10 s to several minutes) and small (2-5 mV) depolarization (14%), and a combination of the two (74%). These responses appeared to involve different regions of the neurite because they changed when the drug-ejection pipette was displaced in the neuropile. Moreover, fast and long-lasting depolarizing components resulted from a direct effect of Ach onto the MNs because they persisted under tetrodotoxin (TTX, 10(-6)M) and cobalt (Co2+, 5 x 10(-3) M) superfusion. 3. Whereas the membrane resistance decreased during the fast Ach-induced depolarization, it increased during the long-lasting depolarization. The increase in membrane resistance was more pronounced at depolarized potentials more than -55 mV and involve a reduction in K+ conductance. 4. Superfusion with nicotinic and muscarinic antagonists revealed that the fast Ach-induced depolarization involved nicotinic receptors, muscarinic receptors, or both, whereas the slow depolarization was exclusively muscarinic. 5. The Ach-evoked inward currents were studied under voltage clamp. The fast nicotinic component (Inic) increased with hyperpolarizing holding potentials and decreased with depolarizing potentials, reversing at between 10 and 30 mV. The fast muscarinic current (Ifmus) displayed similar characteristics and reversed at about -10 mV. Whereas both fast components were voltage independent, the long-lasting muscarinic component (Ismus) was voltage dependent. The response grew with membrane depolarization, but when the holding potential was hyperpolarized below resting level, the response declined to disappear at about -60 mV and beyond.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010095 Oxotremorine A non-hydrolyzed muscarinic agonist used as a research tool. Oxytremorine
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs

Related Publications

D Cattaert, and A Araque, and W Buño, and F Clarac
October 1964, Journal of cellular and comparative physiology,
D Cattaert, and A Araque, and W Buño, and F Clarac
November 1972, Journal of neurophysiology,
D Cattaert, and A Araque, and W Buño, and F Clarac
December 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D Cattaert, and A Araque, and W Buño, and F Clarac
January 1999, Progress in brain research,
D Cattaert, and A Araque, and W Buño, and F Clarac
March 2002, Journal of neurophysiology,
D Cattaert, and A Araque, and W Buño, and F Clarac
November 2002, Journal of neurophysiology,
D Cattaert, and A Araque, and W Buño, and F Clarac
December 1999, British journal of pharmacology,
D Cattaert, and A Araque, and W Buño, and F Clarac
December 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D Cattaert, and A Araque, and W Buño, and F Clarac
March 1982, Brain research,
D Cattaert, and A Araque, and W Buño, and F Clarac
January 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!