DNA amplifications and deletions in Streptomyces lividans 66 and the loss of one end of the linear chromosome. 1995

U Rauland, and I Glocker, and M Redenbach, and J Cullum
Universität Kaiserslautern, Germany.

Thirty-two 2-deoxygalactose-resistant mutants with DNA amplifications were isolated from Streptomyces lividans 66 strains carrying plasmid pMT664, which carries an agarase gene (dagA) and IS466. Thirty-one of the mutants carried amplified DNA sequences from a 70 kb region about 300 kb from one end of the linear chromosome in this species. In 28 of the mutants, all the wild-type sequences between the amplified region and the start of the 30 kb inverted repeat that forms the chromosome end were deleted. Thus, there appeared to be loss of one chromosome end and its replacement by the DNA amplification. In some mutants there amplification of a previously characterised 5.7 kb sequence that lies about 600 kb from the other chromosome end was also noted.

UI MeSH Term Description Entries
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D013291 Streptococcus A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D016521 Electrophoresis, Gel, Pulsed-Field Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length. Electrophoresis, Gel, Pulsed-Field Gradient,Gel Electrophoresis, Pulsed-Field,Contour-Clamped Homogeneous-Field Gel Electrophoresis,Electrophoresis, Gel, Pulsed Field,Electrophoresis, Pulsed Field Gel,Field Inversion Gel Electrophoresis,Orthogonal Field Alternation Gel Electrophoresis,Orthogonal-Field Alternation-Gel Electrophoresis,Pulsed Field Gradient Gel Electrophoresis,Pulsed-Field Gel Electrophoresis,Pulsed-Field Gradient Gel Electrophoresis,Alternation-Gel Electrophoresis, Orthogonal-Field,Contour Clamped Homogeneous Field Gel Electrophoresis,Electrophoresis, Orthogonal-Field Alternation-Gel,Electrophoresis, Pulsed-Field Gel,Gel Electrophoresis, Pulsed Field,Pulsed Field Gel Electrophoresis

Related Publications

U Rauland, and I Glocker, and M Redenbach, and J Cullum
December 1994, Molecular microbiology,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
December 1993, Molecular microbiology,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
May 1987, Molecular & general genetics : MGG,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
July 1983, Journal of general microbiology,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
October 1987, Journal of bacteriology,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
January 1985, Molecular & general genetics : MGG,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
August 1987, Molecular & general genetics : MGG,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
January 1994, Journal of industrial microbiology,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
January 1984, Molecular & general genetics : MGG,
U Rauland, and I Glocker, and M Redenbach, and J Cullum
December 2004, Applied and environmental microbiology,
Copied contents to your clipboard!