Characterization of a glutathione S-transferase and a related glutathione-binding protein from gill of the blue mussel, Mytilus edulis. 1995

P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
Department of Biochemistry, University College Cork, Ireland.

The major isoenzyme of glutathione S-transferase (GST 1) was purified to homogeneity from cytosolic extracts of Mytilus edulis gill tissue by GSH-agarose affinity chromatography followed by Mono Q ion-exchange f.p.l.c. This enzyme was particularly active with 1-chloro-2,4-dinitrobenzene, ethacrynic acid and cumene hydroperoxide as substrates. Immunoblotting and amino acid sequencing studies indicate that the enzyme belongs to the Pi class of GSTs. A related protein which binds to GSH-agarose was also purified. This GSH-binding protein did not immunoblot with GST antisera and showed no detectable catalytic activity with GST substrates although its N-terminal sequence was similar to Mu-class GSTs. Gel-filtration chromatography indicated that GST 1 is a dimer and the GSH-binding protein a monomer. Mass spectrometry and SDS/PAGE indicate subunit molecular masses of 24 kDa (GST 1) and 25 kDa (GSH-binding protein), respectively. Both proteins have amino acid compositions typical of GSTs.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005880 Gills Paired respiratory organs of fishes and some amphibians that are analogous to lungs. They are richly supplied with blood vessels by which oxygen and carbon dioxide are exchanged directly with the environment. Gill
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
August 1993, Xenobiotica; the fate of foreign compounds in biological systems,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
December 2003, Marine environmental research,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
October 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
March 2003, Ecotoxicology and environmental safety,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
August 1992, The Biological bulletin,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
April 1979, Biochemical genetics,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
January 2018, International journal of molecular sciences,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
March 2013, Journal of food science,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
January 1997, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals,
P J Fitzpatrick, and T O Krag, and P Højrup, and D Sheehan
October 2009, The Biological bulletin,
Copied contents to your clipboard!