Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. 1995

G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
Department of Chemistry, Cambridge University, U.K.

The extracellular siderophore from Mycobacterium smegmatis, exochelin MS, was isolated from iron-deficiently grown cultures and purified to > 98% by a combination of ion-exchange chromatography and h.p.l.c. The material is unextractable into organic solvents, is basic (pI = 9.3-9.5), has a lambda max at 420 nm and a probable Ks for Fe3+ of between 10(25) and 10(30). Its structure has been determined by examination of desferri- and ferri-exochelin and its gallium complex. The methods used were electrospray-m.s. and one- and two-dimensional (NOESY, DQF-COSY and TOCSY) 1H n.m.r. The constituent amino acids were examined by chiral g.l.c analysis of N-trifluoroacetyl isopropyl and N-pentafluoropropionyl methyl esters after hydrolysis, and reductive HI hydrolysis, of the siderophore. The exochelin is a formylated pentapeptide: N-(delta-N-formyl,delta N-hydroxy-R-ornithyl) -beta-alaninyl-delta N-hydroxy-R-ornithinyl-R-allo-threoninyl-delta N-hydroxy-S-ornithine. The linkages involving the three ornithine residues are via their delta N(OH) and alpha-CO groups leaving three free alpha-NH2 groups. Although there are two peptide bonds, these involve the three R (D)-amino acids. Thus the molecule has no conventional peptide bond, and this suggests that it will be resistant to peptidase hydrolysis. The co-ordination centre with Fe3+ is hexadenate in an octahedral structure involving the three hydroxamic acid groups. Molecular modelling shows it to have similar features to other ferric trihydroxamate siderophores whose three-dimensional structures have been established. The molecule is shown to have little flexibility around the iron chelation centre, although the terminal (Orn-3) residue, which is not involved in iron binding except at its delta N atom, has more motional freedom.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009161 Mycobacterium A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts. Mycobacteria
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D017262 Siderophores Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994) Siderophore,Siderochromes

Related Publications

G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
October 2004, Inorganic chemistry,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
October 1989, FEBS letters,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
June 2003, Journal of the American Chemical Society,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
August 1996, Microbiology (Reading, England),
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
January 2003, Methods in molecular biology (Clifton, N.J.),
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
January 1962, Acta biochimica Polonica,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
March 1988, Biochimica et biophysica acta,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
August 1983, Archives of biochemistry and biophysics,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
March 2006, Journal of biochemistry and molecular biology,
G J Sharman, and D H Williams, and D F Ewing, and C Ratledge
January 1994, Microbios,
Copied contents to your clipboard!