Changes in calcium influx affect the differentiation of murine erythroleukaemia cells. 1995

B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
Institute of Biochemistry, University of Genova, Italy.

As indicated by direct evidence, obtained by altering the cell-membrane permeability for Ca2+ in murine erythroleukaemia (MEL) cells, calpain is the triggering factor which connects fluctuations of the intracellular Ca2+ concentrations to the decay of protein kinase C (PKC), as well as to the kinetics of cell differentiation induced by hexamethylenebisacetamide. Cell exposure to verapamil caused a profound decrease in the rate of PKC down-regulation and a slower initial rate of accumulation of mature erythroid cells, whereas addition of the Ca2+ ionophore A23187 produced opposite effects. The high susceptibility of PKC-delta to calpain degradation, at concentrations of Ca2+ much lower than those required for degradation of the other PKC isoforms, may be explained by the finding that this kinase isoform is predominantly associated with the cell membrane. The different cellular localizations, as well as the different susceptibilities to calpain digestion, further support the hypothesis that in MEL cells the various PKC isoforms play distinct biological functions that are critical for the maintenance of the undifferentiated state of the cell and for its commitment to terminal erythroid differentiation.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002154 Calpain Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4. Calcium-Activated Neutral Protease,Calcium-Dependent Neutral Proteinase,Ca2+-Activated Protease,Calcium-Activated Neutral Proteinase,Calcium-Activated Protease,Calcium-Dependent Neutral Protease,Calpain I,Calpain II,Desminase,Ca2+ Activated Protease,Calcium Activated Neutral Protease,Calcium Activated Neutral Proteinase,Calcium Activated Protease,Calcium Dependent Neutral Protease,Calcium Dependent Neutral Proteinase,Neutral Protease, Calcium-Activated,Neutral Protease, Calcium-Dependent,Neutral Proteinase, Calcium-Activated,Neutral Proteinase, Calcium-Dependent,Protease, Ca2+-Activated,Protease, Calcium-Activated,Protease, Calcium-Activated Neutral,Protease, Calcium-Dependent Neutral,Proteinase, Calcium-Activated Neutral,Proteinase, Calcium-Dependent Neutral
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
December 1985, Cell biology international reports,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
February 1993, Blood,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
November 1995, The Biochemical journal,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
April 1987, The Biochemical journal,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
January 1986, Nature,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
August 1994, Biochimica et biophysica acta,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
February 1989, Journal of cell science,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
September 1998, Immunology,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
March 1986, Biochimica et biophysica acta,
B Sparatore, and A Pessino, and M Patrone, and M Passalacqua, and E Melloni, and S Pontremoli
January 1984, Nature,
Copied contents to your clipboard!