A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. 1994

F Geoffroy, and R Sodoyer, and L Aujame
Department of Molecular Immunology, Pasteur Mérieux Sérums et Vaccins, Marcy l'Etoile, France.

We present an easy and efficient technique for the construction of large phage-displayed antibody (Ab) repertoires through the recombination of two separate heavy (VH) and light (VL) chain gene libraries. Here, the system has been applied to the display of a chimpanzee anti-HIV gp160 Ab. The process, which makes use of lambda phage att recombination sites, leads to the irreversible physical association between plasmid and phagemid vectors carrying, respectively, VL and VH sequences. The heat-inducible expression of the Int recombinase allows perfect control of recombination. Selection of the recombinant phagemid is made possible by the assembly, in vivo, of a genetic marker (chloramphenicol resistance) created only after the correct recombination event. Theoretically, all possible associations between the VL and VH sequences should be obtained, and it should be possible to generate multicombinatorial libraries of close to 10(12) clones.

UI MeSH Term Description Entries
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011498 Protein Precursors Precursors, Protein
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002679 Pan troglodytes The common chimpanzee, a species of the genus Pan, family HOMINIDAE. It lives in Africa, primarily in the tropical rainforests. There are a number of recognized subspecies. Chimpanzee,Chimpanzee troglodytes,Chimpanzee troglodyte,Chimpanzees,Pan troglodyte,troglodyte, Pan,troglodytes, Chimpanzee
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated

Related Publications

F Geoffroy, and R Sodoyer, and L Aujame
January 2012, International journal of molecular sciences,
F Geoffroy, and R Sodoyer, and L Aujame
August 1997, Current opinion in biotechnology,
F Geoffroy, and R Sodoyer, and L Aujame
January 2018, Methods in molecular biology (Clifton, N.J.),
F Geoffroy, and R Sodoyer, and L Aujame
January 2023, Methods in molecular biology (Clifton, N.J.),
F Geoffroy, and R Sodoyer, and L Aujame
April 2007, Molecular immunology,
F Geoffroy, and R Sodoyer, and L Aujame
January 2016, Current pharmaceutical design,
F Geoffroy, and R Sodoyer, and L Aujame
April 2008, Drug discovery today,
F Geoffroy, and R Sodoyer, and L Aujame
August 1991, Nature,
F Geoffroy, and R Sodoyer, and L Aujame
January 2002, Methods in molecular biology (Clifton, N.J.),
F Geoffroy, and R Sodoyer, and L Aujame
January 2002, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!