Lipid peroxidation in rats chronically fed ethanol. 1994

J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
Gastrointestinal laboratory, Rayne Institute, St Thomas's Hospital, London.

Chronic alcohol consumption induces cytochrome P450IIE1, enabling habitual abusers to consume far greater quantities of alcohol than normal subjects. This pathway of metabolism leads to the production of free radical species, which cause tissue damage through peroxidation of cell membranes. Groups of Wistar rats of equal male: female ratio (n = 24) were fed alcohol by gavage twice daily to achieve a dosage of 15 g/kg body weight. Mean peak blood alcohol concentrations of 186 mg% were produced in males and 156 mg% in females. The animals were allowed free access to standard laboratory chow and water. Control animals were pair-fed to the alcoholic group and fed isocaloric glucose by gavage. Groups of animals were killed between 9 and 11 am on consecutive mornings, after nocturnal feeding, since it has previously been shown that fasting rapidly depletes hepatic glutathione concentrations. Hepatic glutathione was measured by a spectrophotometric enzymatic recycling procedure. As a marker of lipid peroxidation hepatic malonaldehyde (MDA) was measured by high performance liquid chromatography. Hepatic MDA was increased in the alcoholic group (p < 0.001), as was total hepatic glutathione (p < 0.0001). Plasma concentrations of alpha-tocopherol were increased in the alcoholic group, but ascorbic acid and superoxide dismutase values were not affected. No sex differences were detected. The increased MDA production in the alcohol group is strong evidence that lipid peroxidation is a mechanism of alcoholic tissue damage. The rise in hepatic glutathione may be an adaptive response to free radical production that protects the rat against tissue damage.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008108 Liver Diseases, Alcoholic Liver diseases associated with ALCOHOLISM. It usually refers to the coexistence of two or more subentities, i.e., ALCOHOLIC FATTY LIVER; ALCOHOLIC HEPATITIS; and ALCOHOLIC CIRRHOSIS. Alcoholic Liver Diseases,Alcoholic Liver Disease,Liver Disease, Alcoholic
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
June 1977, Naunyn-Schmiedeberg's archives of pharmacology,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
December 1985, Biochemical medicine,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
December 1997, Zhonghua nei ke za zhi,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
February 1999, Journal of applied physiology (Bethesda, Md. : 1985),
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
December 1995, The Journal of laboratory and clinical medicine,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
July 1974, Research communications in chemical pathology and pharmacology,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
January 2002, Journal of applied toxicology : JAT,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
October 1988, Drug and alcohol dependence,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
September 2004, Biological trace element research,
J P Teare, and S M Greenfield, and D Watson, and N A Punchard, and N Miller, and C A Rice-Evans, and R P Thompson
January 1991, Alcohol (Fayetteville, N.Y.),
Copied contents to your clipboard!