Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. 1995

D Donze, and T M Townes, and J J Bieker
Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham 35294.

Erythroid Kruppel-like factor (EKLF) is an erythroid-specific transcription factor that contains zinc finger domains similar to the Kruppel protein of Drosophila melanogaster. Previous studies demonstrated that EKLF binds to the CACCC box in the human beta-globin gene promoter and activates transcription. CACCC box mutations that cause severe beta-thalassemias in humans inhibit EKLF binding. Results described in this paper suggest that EKLF functions predominately in adult erythroid tissue. The EKLF gene is expressed at a 3-fold higher level in adult erythroid tissue than in fetal erythroid tissue, and the EKLF protein binds to the human beta-globin promoter 8-fold more efficiently than to the human gamma-globin promoter. Co-transfection experiments in the human fetal-like erythroleukemia cell line K562 demonstrate that over-expression of EKLF activates a beta-globin reporter construct 1000-fold; a linked gamma-globin reporter is activated only 3-fold. Mutation of the beta-globin CACCC box severely inhibits activation. These results demonstrate that EKLF is a developmental stage-enriched protein that preferentially activates human beta-globin gene expression. The data strongly suggest that EKLF is an important factor involved in human gamma- to beta-globin gene switching.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene

Related Publications

D Donze, and T M Townes, and J J Bieker
March 1990, Genes & development,
D Donze, and T M Townes, and J J Bieker
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
D Donze, and T M Townes, and J J Bieker
March 2000, Proceedings of the National Academy of Sciences of the United States of America,
D Donze, and T M Townes, and J J Bieker
May 2002, The Journal of biological chemistry,
D Donze, and T M Townes, and J J Bieker
April 1992, Molecular and cellular biology,
D Donze, and T M Townes, and J J Bieker
April 2006, Cell research,
D Donze, and T M Townes, and J J Bieker
September 2010, Nature genetics,
Copied contents to your clipboard!