Retinoic acid regulates oral epithelial differentiation by two mechanisms. 1995

M B Kautsky, and P Fleckman, and B A Dale
Department of Oral Biology, University of Washington, Seattle 98195.

The effect of retinoic acid (RA) concentration on differentiation of oral keratinocytes and the influence of fibroblasts on RA-dependent regulation were investigated in a lifted culture system. Keratinocyte differentiation was assessed by morphology, immunohistochemistry and immunoblotting. Filaggrin/profilaggrin and keratin 1 were used as biochemical markers for cornified epithelium and keratins 13 and 19 as markers for noncornified epithelium. Cultured oral keratinocytes in RA-free conditions differentiated in a manner that closely resembled the differentiation pattern of gingival epithelia in vivo. Increasing RA concentrations altered the in vivo-like terminal differentiation of oral keratinocytes by disruption of organized stratification, inhibition of filaggrin/profilaggrin and K1 expression, and stimulation of K13 and K19 expression. Differentiation of keratinocytes from both cornified and noncornified regions of the oral cavity varied in a similar manner in response to added RA, with the exception of K19 expression. K19 was consistently expressed at higher levels in keratinocytes originating from noncornified epithelia as compared to those from cornified epithelia. The level of RA regulation was ultimately dependent on the type of fibroblasts underlying the epithelial cells. Homologous fibroblasts rendered the oral keratinocytes less sensitive to the effects of RA than skin fibroblasts. In addition, at a given RA concentration, fibroblasts from cornified oral mucosa potentiated keratinocyte expression of RA sensitive markers of keratinization as compared to the influence exerted by fibroblasts originating from noncornified oral mucosa. These results indicate that the RA regulation of oral epithelial differentiation is mediated by two separate mechanisms: a direct, RA concentration-dependent effect, and an indirect, fibroblast-mediated effect.

UI MeSH Term Description Entries
D009061 Mouth Mucosa Lining of the ORAL CAVITY, including mucosa on the GUMS; the PALATE; the LIP; the CHEEK; floor of the mouth; and other structures. The mucosa is generally a nonkeratinized stratified squamous EPITHELIUM covering muscle, bone, or glands but can show varying degree of keratinization at specific locations. Buccal Mucosa,Oral Mucosa,Mucosa, Mouth,Mucosa, Oral
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000091344 Filaggrin Proteins S100 proteins that aggregate KERATINS. Filaggrin precursor proteins are localized in keratohyalin granules and processed into individual functional filaggrin molecules during terminal epidermis differentiation. Mutations in fillagrins are associated with ICHTHYOSIS VULGARIS. Filaggrin,Filaggrin Protein,Profilaggrin,Stratum Corneum Basic Protein,Stratum Corneum Basic Protein Precursor,Protein, Filaggrin,Proteins, Filaggrin
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte

Related Publications

M B Kautsky, and P Fleckman, and B A Dale
May 2010, Proceedings of the National Academy of Sciences of the United States of America,
M B Kautsky, and P Fleckman, and B A Dale
January 1991, Journal of craniofacial genetics and developmental biology,
M B Kautsky, and P Fleckman, and B A Dale
July 2018, Journal of immunology (Baltimore, Md. : 1950),
M B Kautsky, and P Fleckman, and B A Dale
January 1992, Postepy biochemii,
M B Kautsky, and P Fleckman, and B A Dale
July 2013, Neural development,
M B Kautsky, and P Fleckman, and B A Dale
February 1991, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
M B Kautsky, and P Fleckman, and B A Dale
October 1991, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
M B Kautsky, and P Fleckman, and B A Dale
August 1991, Cellular and molecular neurobiology,
M B Kautsky, and P Fleckman, and B A Dale
January 2015, Developmental biology,
Copied contents to your clipboard!