Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli. 1976

G Nemoz, and J Robert-Baudouy, and F Stoeber

In Escherichia coli K-12, the specificity of the aldohexuronate transport system (THU) is restricted to glucuronate and galacturonate. There is a relatively high basal-level activity in uninduced wild-type or isomeraseless strains. Supplementary activity is obtained with the inducers mannonic amide (five-fold), galacturonate (fourfold), fructuronate (fivefold), and tagaturonate (sevenfold). Specific THU- mutants were selected as strains unable to grow on either aldohexuronate but able to grow on fructuronate or tagaturonate. The remaining transport activity in uninduced and induced THU- starins represents less than 20% of that found in the wild type. Conjugation and transduction experiments indicate that all of the THU- mutations are located in a unique locus, exuT, half-way between the tolC (59 min) and argG (61 min) markers. exuT is closely linked to the uxaC-uxaA operon (60 min) and to the regulatory gene exuR (60 min), which controls the above-mentioned operon and the uxaB operon (45 min). Growth on either aldohexuronate and transport activity are fully recovered when exuT mutants are allowed to revert to exuT+ on galacturonate or glucuronate. Reversion on glucuronate alone may lead to the mutational derepression of the 2-keto-3-deoxygluconate transport system, which is uninducible in the wild type, which also takes up glucuronate, and whose structural gene belongs to the kdg regulon. Such strains, which remain unable to grow on galacturonate, are exuT and kdgR (constitutive allele of the regulatory gene kdgR of the kdg regulon). THU activity is superrepressed in an exuR mutant in which the uxaC-uxaA operon and the uxaB operon are superrepressed; exuR+/exuR merodiploids are also superrepressed. In a thermosensitive exuR mutant in which the above-mentioned operons are constitutive at 42 degrees C, the THU activity is fully derepressed at this temperature. On the basis of these and other results, it is concluded that THU is coded for by the structural gene exuT, which is negatively controlled by the exuR gene product and which probably belongs to an operon distinct from the uxaA-uxaC operon.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D002238 Carbohydrate Epimerases Enzymes that catalyze the epimerization of chiral centers within carbohydrates or their derivatives. EC 5.1.3. Carbohydrate Isomerases,Epimerases, Carbohydrate,Isomerases, Carbohydrate
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic

Related Publications

G Nemoz, and J Robert-Baudouy, and F Stoeber
March 1998, Microbiology and molecular biology reviews : MMBR,
G Nemoz, and J Robert-Baudouy, and F Stoeber
January 1977, Mikrobiologiia,
G Nemoz, and J Robert-Baudouy, and F Stoeber
August 1974, Journal of bacteriology,
G Nemoz, and J Robert-Baudouy, and F Stoeber
January 1974, The Journal of biological chemistry,
G Nemoz, and J Robert-Baudouy, and F Stoeber
March 1981, Journal of bacteriology,
G Nemoz, and J Robert-Baudouy, and F Stoeber
July 1975, Journal of bacteriology,
G Nemoz, and J Robert-Baudouy, and F Stoeber
February 1978, Journal of bacteriology,
G Nemoz, and J Robert-Baudouy, and F Stoeber
October 1989, Journal of general microbiology,
G Nemoz, and J Robert-Baudouy, and F Stoeber
June 1975, Journal of bacteriology,
G Nemoz, and J Robert-Baudouy, and F Stoeber
September 1978, The Journal of general physiology,
Copied contents to your clipboard!