Pentobarbital-like discriminative stimulus effects of direct GABA agonists in rats. 1993

D M Grech, and R L Balster
Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613.

The discriminative stimulus effects of direct and indirect-acting GABAergic drugs were investigated in rats trained to discriminate 5 mg/kg pentobarbital (PB) from saline under a two-lever fixed ratio (FR) 32 schedule of food reinforcement. PB and diazepam produced dose-dependent substitution for the training dose of PB with response rate reduction only at doses above those producing full substitution. Muscimol, thiomuscimol and 4,5,6,7-tetrahydroisoxazolo [5,4-c]-pyridin-3-ol (THIP) produced intermediate levels of pentobarbital-lever responding (40-60%), accompanied by dose-dependent decreases in rates of responding following THIP and muscimol administration. The GABAA agonist progabide and its metabolite 4-([(4-chlorophenyl) (5-fluoro-2-hydroxyphenyl)methylene]amino)] butyric acid (SL 75102) also partially substituted for PB, producing means of 39-73% PB-lever responding. The GABAB agonist, baclofen, completely failed to substitute for PB even at doses that decreased rates of responding. These results show that the discriminative stimulus effects of indirect GABAA agonists, PB and diazepam, although similar to one another, differ from those of direct GABAA receptor agonists, which produced only partial substitution for PB. The GABAB agonist, baclofen, can be distinguished by lacking any ability to substitute for PB. These results contribute to a further understanding of the similarities and differences in the behavioral effects of different types of GABA agonists.

UI MeSH Term Description Entries
D008297 Male Males
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D003975 Diazepam A benzodiazepine with anticonvulsant, anxiolytic, sedative, muscle relaxant, and amnesic properties and a long duration of action. Its actions are mediated by enhancement of GAMMA-AMINOBUTYRIC ACID activity. 7-Chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one,Apaurin,Diazemuls,Faustan,Relanium,Seduxen,Sibazon,Stesolid,Valium
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005795 Generalization, Stimulus The tendency to react to stimuli that are different from, but somewhat similar to, the stimulus used as a conditioned stimulus. Generalizations, Stimulus,Stimulus Generalization,Stimulus Generalizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

D M Grech, and R L Balster
February 1998, Pharmacology, biochemistry, and behavior,
D M Grech, and R L Balster
July 1982, Yakubutsu, seishin, kodo = Japanese journal of psychopharmacology,
D M Grech, and R L Balster
March 2014, The Journal of pharmacology and experimental therapeutics,
D M Grech, and R L Balster
September 2011, Behavioural pharmacology,
D M Grech, and R L Balster
January 1980, Psychopharmacology,
D M Grech, and R L Balster
May 1989, The Journal of pharmacology and experimental therapeutics,
D M Grech, and R L Balster
August 1976, European journal of pharmacology,
D M Grech, and R L Balster
September 2000, Behavioural pharmacology,
Copied contents to your clipboard!