Regulation of thyroid-stimulating hormone beta-subunit and growth hormone messenger ribonucleic acid levels in the rat: effect of vitamin A status. 1995

J J Breen, and T Matsuura, and A C Ross, and J A Gurr
Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.

T3 inhibits transcription of the rat TSH beta gene, and two T3 response elements have been identified that bind T3 receptors and that share sequence homology with the consensus sequence that is also recognized by retinoic acid receptors (RARs). We, therefore, asked whether RA was a regulator of TSH beta gene expression in vivo. Using RNase protection analysis, we found that vitamin A deficiency led to a 2-fold increase in rat pituitary TSH beta messenger RNA (mRNA) levels, which returned to normal 18 h after treatment with RA (20 micrograms/rat). Vitamin A deficiency had no effect on TSH beta mRNA levels in hypothyroid rats. Coadministration of RA and T3 (10 micrograms/100g body wt) to either vitamin A-deficient or vitamin A-deficient, hypothyroid animals caused decreases in TSH beta mRNA content that were indistinguishable from those seen with T3 alone. Surprisingly, vitamin A deficiency had no significant effect on GH mRNA levels in euthyroid or hypothyroid rats. Furthermore, treatment of vitamin A-deficient, hypothyroid animals with RA for either 18 or 72 h had no effect on GH mRNA levels, whereas T3 caused 11-fold and 18-fold increases in GH mRNA, respectively, at these times. We also used transient transfection to test for direct, retinoid receptor-mediated regulation of TSH beta gene transcription by RA. A plasmid TSH beta luciferase, containing 0.8 kilobases of rat TSH beta gene 5'-flanking sequences, exon 1, and 150 base pairs of intron 1, was transfected into CV-1 cells. Cotransfection with RAR alpha and retinoid X receptor-beta induced TSH beta expression by 3.5-fold, and treatment with RA suppressed this induction by 46%. These results show that vitamin A levels play a significant role in regulating the expression of the TSH beta gene, but not the GH gene, in vivo and suggest that RA may suppress TSH beta gene transcription directly by an RAR-retinoid X receptor heterodimer-mediated mechanism.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J J Breen, and T Matsuura, and A C Ross, and J A Gurr
August 1987, The Journal of clinical investigation,
J J Breen, and T Matsuura, and A C Ross, and J A Gurr
December 1988, Endocrinology,
J J Breen, and T Matsuura, and A C Ross, and J A Gurr
October 1988, Endocrinology,
J J Breen, and T Matsuura, and A C Ross, and J A Gurr
October 1991, Endocrinology,
J J Breen, and T Matsuura, and A C Ross, and J A Gurr
January 1989, Endocrinology,
J J Breen, and T Matsuura, and A C Ross, and J A Gurr
February 1995, Molecular and cellular endocrinology,
J J Breen, and T Matsuura, and A C Ross, and J A Gurr
December 1989, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!