Conductance-voltage relations in large-conductance chloride channels in proliferating L6 myoblasts. 1994

O Hurnák, and J Zachar
Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava.

Large-conductance chloride channels (maxi-Cl channels) were studied in cultured myoblasts (L6 rat muscle cell line); in excised (inside-out) and in cell attached membrane patches using a conventional patch clamp method. The incidence of maxi-Cl channels was substantially higher in proliferating myoballs, then in quiescent (bottom-attached) myoblasts (90% and 50% percent of examined cells, respectively). The maxi-Cl channels in myoballs were present both in cell attached and excised patches. The channel conductance at symmetric [Cl] = 150 mmol/l was 359 +/- 42 pS (n = 74) in quiescent cells and 439 +/- 10 pS (n = 6) in proliferating myoballs respectively. The conductance of the channel in quiescent cells increased with chloride concentration in symmetric NaCl rich solutions according to Michaelis-Menten curve with the saturation limiting conductance of about 640 pS (gmax) and Km = 112 mmol/l. The shift of the reversal potential upon increasing the pipette concentration of NaCl from 150 to 250 mmol/l was consistent with PNa/PCl = 0.1. Neither the conductance nor the activation of the channel were dependent on the presence of calcium ions. The bell-shaped steady state channel conductance-voltage relationship is asymmetric and can be fitted by two Boltzmann equations with different Vh and k constants; -25.6 mV and -6.8 mV, respectively, for the negative side and +49.6 mV and +13.7 mV for the positive side in quiescent cells. The corresponding values in proliferating myoballs were as follows: -15.5 mV and -2.4 mV, respectively, for the negative side and +31.4 mV and +6.8 mV for the positive side. From the maximum slopes of the Popen versus V curves an estimate was made of the charges for the gates that close at negative (3.5) or positive (1.7) potentials, respectively, in quiescent cells. The corresponding values in myoballs were 10.6 and 3.7, respectively. The probability of one gate to be open was dependent on the state of activation of the opposite gate as determined by prepulses of the opposite polarity. The channel showed multiple (up to six) conductance levels that may develop in a step-like manner. The onset of the full-grown maxi-Cl channel is fairly abrupt; it might, however, be preceded by a small conductance unit activity. It is supposed that the differences between the quiescent myoblasts and proliferating myoballs might reflect increased expression of maxi-Cl channels in myoballs to perform as yet unknown role in the cell cycle and/or proliferation of the myoblasts.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

O Hurnák, and J Zachar
June 1992, Pflugers Archiv : European journal of physiology,
O Hurnák, and J Zachar
November 1999, Biochemical and biophysical research communications,
O Hurnák, and J Zachar
December 1989, Pflugers Archiv : European journal of physiology,
O Hurnák, and J Zachar
May 1991, Biochemical and biophysical research communications,
O Hurnák, and J Zachar
February 1992, Acta physiologica Scandinavica,
O Hurnák, and J Zachar
March 1992, The Journal of physiology,
O Hurnák, and J Zachar
August 2012, Pharmacology & therapeutics,
Copied contents to your clipboard!