Structural comparison of the histidine-containing phosphocarrier protein HPr. 1994

Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
Department of Chemistry, University of Saskatchewan, Saskatoon, Canada.

The phosphocarrier protein HPr is a central component of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) that is responsible for carbohydrate uptake in many bacterial species. A number of three-dimensional structures of HPrs from both Gram-positive and Gram-negative bacteria have been determined; the overall folding topology of HPr is an open-faced beta-sandwich composed of three alpha-helices and a beta-sheet. A detailed structural comparison of these HPrs has been carried out. Besides the overall main chain folding, many detailed structural features are well conserved in all HPr structures. The three x-ray structures of HPrs from Escherichia coli, Streptococcus faecalis, and Bacillus subtilis show considerable overall similarity with respect to the positions of the C alpha atoms. A significant structural difference between HPrs from Gram-positive and Gram-negative bacteria is found in the region of Gly54, owing to the steric effects of Tyr37 in HPrs from the Gram-positive species. The region around Gly54 is involved in the binding of HPr to other PTS proteins and the differences in this region may be responsible for some of the poor functional complementation between HPrs from Gram-positive and Gram-negative species. The active center region, residues 12-18, appears to have significant differences in the comparisons between the overall structures. These differences support the proposal that phosphorylation and dephosphorylation of the active site His15 is accompanied by conformational changes. However, a local structural comparison of residues 12-18 from the x-ray structures of HPrs from E. coli and B. subtilis, and the two-dimensional nuclear magnetic resonance structure of B. subtilis HPr suggests that there is a conserved active center involving residues His15, Arg 17, and Pro18, which shows little conformational change during the phosphorylation cycle. The results of other experimental approaches, including site-directed mutagenesis and NMR spectroscopy, are in some cases difficult to rationalize with some of the details of the structures, but do appear to favour the conclusion that little conformational change occurs.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
January 1995, Protein science : a publication of the Protein Society,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
March 1992, Proceedings of the National Academy of Sciences of the United States of America,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
February 2001, European journal of biochemistry,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
February 1998, European journal of biochemistry,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
February 2021, Microorganisms,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
October 2015, Acta crystallographica. Section D, Biological crystallography,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
October 1997, Protein science : a publication of the Protein Society,
Z Jia, and J W Quail, and L T Delbaere, and E B Waygood
March 1990, Journal of molecular biology,
Copied contents to your clipboard!