Phorbol ester-stimulated stellation in primary cultures of astrocytes from different brain regions. 1994

M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
Department of Biomedical Sciences, School of Public Health, University at Albany, New York 12201-0509.

Stellation is the process by which astrocytes change from epithelial-like to process-bearing cells. Stellation occurs following activation of either cyclic AMP-dependent protein kinase or protein kinase C. This process occurs through tubulin-dependent rearrangement of the cytoskeleton. We have evaluated the ability of phorbol, 12-myristate, 13-acetate (PMA) to induce astrocyte stellation. Astrocytes from five brain regions (cerebellum, cerebral cortex, hippocampus, diencephalon, and brain-stem) were examined to determine if all astrocytes would exhibit similar responses to this activator of protein kinase C. Stellation was evaluated following cell fixation by either phase optics using conventional light microscopy, or scanning laser confocal light microscopy of cultures prepared using immunocytochemistry for tubulin and glial fibrillary acidic protein. Both the number of cells responding to PMA and the sensitivity to PMA varied for astrocytes from each brain region. PMA-induced stellation was most robust in cerebellar and brainstem astrocytes, with greater than 70% responding. Less than 40% of hippocampal and diencephalic astrocytes responded to PMA at the maximum dose (10(-5) M). PMA also induced different numbers of processes or branching patterns of processes on astrocytes from different brain regions. The protein kinase C induced stellation response in astrocytes supports the hypothesis that astrocytes contribute to neural plasticity.

UI MeSH Term Description Entries
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
January 1987, Brain research,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
March 1999, Archives of toxicology,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
January 2012, Methods in molecular biology (Clifton, N.J.),
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
January 2018, Molecular neurobiology,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
January 1994, Neurochemistry international,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
September 1987, Neurochemical research,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
December 1997, Japanese journal of pharmacology,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
November 1979, Brain research,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
December 1987, Brain research,
M I Davis-Cox, and J N Turner, and D Szarowski, and W Shain
June 1986, The American journal of physiology,
Copied contents to your clipboard!