The structural basis of specific base-excision repair by uracil-DNA glycosylase. 1995

R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
Department of Biochemistry and Molecular Biology, University College London, UK.

The 1.75-A crystal structure of the uracil-DNA glycosylase from herpes simplex virus type-1 reveals a new fold, distantly related to dinucleotide-binding proteins. Complexes with a trideoxynucleotide, and with uracil, define the DNA-binding site and allow a detailed understanding of the exquisitely specific recognition of uracil in DNA. The overall structure suggests binding models for elongated single- and double-stranded DNA substrates. Conserved residues close to the uracil-binding site suggest a catalytic mechanism for hydrolytic base excision.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
January 1987, Cancer research,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
September 2006, Cancer research,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
January 1993, Mutation research,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
July 1994, Annals of the New York Academy of Sciences,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
June 2009, The Journal of biological chemistry,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
November 2008, DNA repair,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
September 1998, The EMBO journal,
R Savva, and K McAuley-Hecht, and T Brown, and L Pearl
May 2000, Nucleic acids research,
Copied contents to your clipboard!