Identification by photoaffinity labelling of a pyridine nucleotide-dependent tri-iodothyronine-binding protein in the cytosol of cultured astroglial cells. 1995

A Beslin, and M P Vié, and J P Blondeau, and J Francon
Unité de Recherches sur la Glande Thyroïde et la Régulation Hormonale (U. 96), Institut National de la Santé et de la Recherche Médicale, Le Kremlin-Bicêtre, France.

High-affinity 3,3',5-tri-iodo-L-thyronine (T3) binding (Kd approximately 0.3 nM) to the cytosol of cultured rat astroglial cells was strongly activated in the presence of pyridine nucleotides. A 35 kDa pyridine nucleotide-dependent T3-binding polypeptide (35K-TBP) was photoaffinity labelled using underivatized [125I]T3 in the presence of pyridine nucleotides and the free-radical scavenger dithiothreitol. Maximum activations of T3 binding and 35K-TBP photolabelling were obtained at approx. 1 x 10(-7) M NADP+ or NADPH, or 1 x 10(-4) M NADH. NAD+ and other nucleotides were without effect. NADPH is the form which activates T3 binding and 35K-TBP photolabelling, since cytosol contains NADP(+)-reducing activity, and the activation of both processes in the presence of NADPH and NADP+ was prevented by an exogenous NADPH oxidation system. NADPH behaved as an allosteric activator of T3 binding. The NADPH oxidation system promoted the release of bound T3 in the absence of any change in the total concentration of the hormone. The 35K-TBP photolabelling and [125I]T3 binding were similarly inhibited by non-radioactive T3 (half-maximum effect at 0.5-1.0 nM T3). The concentrations of iodothyronine analogues that inhibited both processes were correlated (3,3',5-tri-iodo-D-thyronine > or = T3 > L-thyroxine > tri-iodothyroacetic acid > 3,3'5'-tri-iodo-L-thyronine). Molecular sieving and density-gradient centrifugation of cytosol identified a 65 kDa T3-binding entity, which included the 35K-TBP. These results indicate that 35K-TBP is the cytosolic entity involved in the pyridine nucleotide-dependent T3 binding, and suggest that the sequestration and release of intracellular thyroid hormones are regulated by the redox state of astroglial cell compartment(s).

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's

Related Publications

A Beslin, and M P Vié, and J P Blondeau, and J Francon
July 1982, The Biochemical journal,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 1986, The Biochemical journal,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 1992, The Biochemical journal,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 1992, The Journal of endocrinology,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 1984, The Biochemical journal,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
October 1984, FEBS letters,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 1999, The Journal of endocrinology,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 2014, Hepatology (Baltimore, Md.),
A Beslin, and M P Vié, and J P Blondeau, and J Francon
June 2003, Endocrinology,
A Beslin, and M P Vié, and J P Blondeau, and J Francon
May 1999, The Biochemical journal,
Copied contents to your clipboard!